The Bigger Fish: A Comparison of Meta-Learning QSAR Models on Low-Resourced Aquatic Toxicity Regression Tasks

数量结构-活动关系 计算机科学 机器学习 水准点(测量) 任务(项目管理) 人工智能 随机森林 适用范围 水生毒理学 资源(消歧) 毒性 化学 工程类 计算机网络 有机化学 大地测量学 系统工程 地理
作者
Thalea Schlender,Markus Viljanen,Jan N. van Rijn,Felix Mohr,Willie J.G.M. Peijnenburg,Holger H. Hoos,Emiel Rorije,Albert Wong
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 17818-17830 被引量:11
标识
DOI:10.1021/acs.est.3c00334
摘要

Toxicological information as needed for risk assessments of chemical compounds is often sparse. Unfortunately, gathering new toxicological information experimentally often involves animal testing. Simulated alternatives, e.g., quantitative structure–activity relationship (QSAR) models, are preferred to infer the toxicity of new compounds. Aquatic toxicity data collections consist of many related tasks─each predicting the toxicity of new compounds on a given species. Since many of these tasks are inherently low-resource, i.e., involve few associated compounds, this is challenging. Meta-learning is a subfield of artificial intelligence that can lead to more accurate models by enabling the utilization of information across tasks. In our work, we benchmark various state-of-the-art meta-learning techniques for building QSAR models, focusing on knowledge sharing between species. Specifically, we employ and compare transformational machine learning, model-agnostic meta-learning, fine-tuning, and multi-task models. Our experiments show that established knowledge-sharing techniques outperform single-task approaches. We recommend the use of multi-task random forest models for aquatic toxicity modeling, which matched or exceeded the performance of other approaches and robustly produced good results in the low-resource settings we studied. This model functions on a species level, predicting toxicity for multiple species across various phyla, with flexible exposure duration and on a large chemical applicability domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lym2021完成签到,获得积分20
2秒前
2秒前
3秒前
lilyz615完成签到,获得积分10
4秒前
4秒前
瞿思烟发布了新的文献求助10
4秒前
boyeer发布了新的文献求助10
4秒前
务实的数据线完成签到,获得积分10
4秒前
5秒前
我是老大应助Ch采纳,获得10
5秒前
友好电话完成签到,获得积分10
6秒前
龚仕杰完成签到 ,获得积分10
6秒前
完美世界应助zcl采纳,获得10
7秒前
7秒前
7秒前
哆啦完成签到,获得积分10
8秒前
8秒前
灿烂千阳发布了新的文献求助10
8秒前
ljx完成签到 ,获得积分10
8秒前
万能图书馆应助小会采纳,获得10
9秒前
Ganlou应助瞿思烟采纳,获得10
13秒前
13秒前
Ganlou应助瞿思烟采纳,获得10
13秒前
CipherSage应助无限的高烽采纳,获得10
13秒前
13秒前
14秒前
14秒前
淡定的弘发布了新的文献求助10
14秒前
15秒前
15秒前
H先生完成签到,获得积分10
16秒前
Sam十九发布了新的文献求助10
18秒前
DYQin发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助一一一采纳,获得10
18秒前
安详水儿发布了新的文献求助10
19秒前
KIKI完成签到,获得积分10
20秒前
zcl发布了新的文献求助10
20秒前
带线一去不回完成签到,获得积分10
20秒前
enen发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311876
求助须知:如何正确求助?哪些是违规求助? 2944696
关于积分的说明 8520681
捐赠科研通 2620293
什么是DOI,文献DOI怎么找? 1432756
科研通“疑难数据库(出版商)”最低求助积分说明 664759
邀请新用户注册赠送积分活动 650064