小胶质细胞
体内
缺血
兴奋剂
医学
药理学
化学
NF-κB
内科学
炎症
生物
受体
生物技术
作者
Rui Li,Hui-Yu Jia,Min Si,Xinwei Li,Zheng Ma,Yu. Zhu,Wu‐Yi Sun,Fengqin Zhu,Shengyong Luo
标识
DOI:10.1016/j.ejphar.2023.175860
摘要
The latest research indicates that modulating microglial polarization from M1 to M2 phenotype may be a coping therapy for ischemic stroke. The present study thereby evaluated the effects of loureirin B (LB), a monomer compound extracted from Sanguis Draconis flavones (SDF), on cerebral ischemic injury and the potential mechanisms. The middle cerebral artery occlusion (MCAO) model was established in male Sprague-Dawley rats to induce cerebral ischemia/reperfusion (I/R) injury in vivo, and BV2 cells were exposed to oxygen-glucose deprivation and reintroduction (OGD/R) to mimic cerebral I/R injury in vitro. The results showed that LB significantly reduced infarct volume, neurological deficits and neurobehavioral deficits, apparently improved histopathological changes and neuronal loss in cortex and hippocampus of MCAO/R rats, markedly decreased the proportion of M1 microglia cells and the level of pro-inflammatory cytokines, and increased the proportion of M2 microglia and the level of anti-inflammatory cytokines both in vivo and in vitro. In addition, LB evidently improved the p-STAT6 expression and reduced the NF-κB (p-p65) expression after cerebral I/R injury in vivo and in vitro. IL-4 (a STAT6 agonist) exhibited a similar impact to that of LB, while AS1517499 (a STAT6 inhibitor) significantly reversed the effect of LB on BV-2 cells after OGD/R. These findings point to the protection of LB against cerebral I/R injury by modulating M1/M2 polarization of microglia via the STAT6/NF-κB signaling pathway, hence LB may be a viable treatment option for ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI