Polarimetric monocular leaf normal estimation model for plant phenotyping

计算机科学 稳健性(进化) 人工智能 计算机视觉 镜面反射 单眼 极化(电化学) 旋光法 像素 遥感 算法 光学 散射 地质学 物理 基因 生物化学 物理化学 化学
作者
Fuduo Xue,Bashar Elnashef,Weiqi Jin,Sagi Filin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 142-157 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.05.029
摘要

We develop in this paper an accurate, pixel-level, plant leaf normal estimation model by a single polarization image. Though traditional sensing can generate leaf 3-D surface information, these techniques are limited in application because of sensor cost and acquisition-time-related considerations. To achieve the detailed and monocular estimation capacity, we propose a novel surface polarization reflection model that considers a mixture of diffuse or specular reflections and describes the actual reflection process more accurately than prevailing models. Our model also directly corresponds with the recorded polarization states, allowing for direct implementation, no additional computational cost, and no requirement for prior knowledge. We also propose a new strategy to disambiguate the normal solution associated with polarization-based imaging. In contrast to existing methods, which use auxiliary sensory information for the disambiguation, we derive a coarse normal map directly from our image data using an off-the-shelf convolutional neural network. Consequently, we facilitate instantaneous data acquisition, which is essential when modeling dynamic non-rigid objects. Using the coarse normal map as a constraint and optimizing optical smoothness properties makes our estimated outcome more accurate than state-of-the-art results. Experiments show that our median normal angular error is 5.6°, offering a threefold improvement to current polarimetric methods and equivalent or better than what SfM-MVS methods provide, yet using only a single image. Our leaf orientation map is also more detailed than existing methods while exhibiting robustness to polarization image noise and the guiding depth map quality. Hence, by a single polarization image, we obtain high-quality surface normal data with no additional aid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高佳升完成签到,获得积分10
1秒前
1秒前
123123发布了新的文献求助10
2秒前
2秒前
blessed兰完成签到,获得积分10
2秒前
Rain发布了新的文献求助10
3秒前
思源应助自信的董博采纳,获得10
3秒前
英俊的铭应助小鱼儿采纳,获得10
3秒前
冷艳的璎发布了新的文献求助10
4秒前
默默的凡梅完成签到,获得积分10
4秒前
小魔王发布了新的文献求助10
4秒前
叮当萧完成签到,获得积分10
4秒前
小丰完成签到,获得积分10
5秒前
5秒前
Aniee完成签到,获得积分10
6秒前
雾岛看海完成签到,获得积分10
6秒前
许许许完成签到,获得积分10
6秒前
直到花豆煮熟完成签到 ,获得积分10
6秒前
幽默雨完成签到,获得积分10
6秒前
嘻嘻哈哈应助Rain采纳,获得10
6秒前
十八完成签到,获得积分10
7秒前
踏实威完成签到,获得积分10
7秒前
7秒前
滕汝汝发布了新的文献求助10
7秒前
风中冰香应助achilles采纳,获得10
7秒前
7秒前
机智的早晨完成签到,获得积分10
8秒前
8秒前
追寻映容完成签到 ,获得积分10
9秒前
鹏子完成签到,获得积分20
10秒前
10秒前
淡淡二娘应助13068957428采纳,获得120
10秒前
Zoe完成签到,获得积分10
11秒前
11秒前
略略完成签到,获得积分10
11秒前
11秒前
田様应助南瓜粥配凉皮采纳,获得10
11秒前
高高的山兰完成签到 ,获得积分10
12秒前
科目三应助尹兴亮采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182