Polarimetric monocular leaf normal estimation model for plant phenotyping

计算机科学 稳健性(进化) 人工智能 计算机视觉 镜面反射 单眼 极化(电化学) 旋光法 像素 遥感 算法 光学 散射 地质学 物理 基因 生物化学 物理化学 化学
作者
Fuduo Xue,Bashar Elnashef,Weiqi Jin,Sagi Filin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 142-157 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.05.029
摘要

We develop in this paper an accurate, pixel-level, plant leaf normal estimation model by a single polarization image. Though traditional sensing can generate leaf 3-D surface information, these techniques are limited in application because of sensor cost and acquisition-time-related considerations. To achieve the detailed and monocular estimation capacity, we propose a novel surface polarization reflection model that considers a mixture of diffuse or specular reflections and describes the actual reflection process more accurately than prevailing models. Our model also directly corresponds with the recorded polarization states, allowing for direct implementation, no additional computational cost, and no requirement for prior knowledge. We also propose a new strategy to disambiguate the normal solution associated with polarization-based imaging. In contrast to existing methods, which use auxiliary sensory information for the disambiguation, we derive a coarse normal map directly from our image data using an off-the-shelf convolutional neural network. Consequently, we facilitate instantaneous data acquisition, which is essential when modeling dynamic non-rigid objects. Using the coarse normal map as a constraint and optimizing optical smoothness properties makes our estimated outcome more accurate than state-of-the-art results. Experiments show that our median normal angular error is 5.6°, offering a threefold improvement to current polarimetric methods and equivalent or better than what SfM-MVS methods provide, yet using only a single image. Our leaf orientation map is also more detailed than existing methods while exhibiting robustness to polarization image noise and the guiding depth map quality. Hence, by a single polarization image, we obtain high-quality surface normal data with no additional aid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
max完成签到,获得积分20
刚刚
刚刚
mamin发布了新的文献求助10
刚刚
ytxu发布了新的文献求助10
1秒前
艾v发布了新的文献求助10
1秒前
2秒前
岁峰柒发布了新的文献求助10
2秒前
夏青荷完成签到,获得积分10
2秒前
Jasper应助九霄采纳,获得10
2秒前
田様应助砍柴少年采纳,获得10
2秒前
852应助漫漫采纳,获得10
3秒前
3秒前
Artemis完成签到,获得积分10
3秒前
orixero应助Ryan123采纳,获得10
3秒前
紫紫发布了新的文献求助10
3秒前
3秒前
CC完成签到,获得积分10
4秒前
4秒前
123rfg发布了新的文献求助10
4秒前
灵巧的以亦完成签到,获得积分10
4秒前
董泽云发布了新的文献求助10
4秒前
帕金森十级选手关注了科研通微信公众号
5秒前
dd发布了新的文献求助10
5秒前
mamin完成签到,获得积分20
5秒前
5秒前
ghy完成签到,获得积分10
5秒前
机智冬灵完成签到,获得积分10
6秒前
背后海亦发布了新的文献求助10
6秒前
shuqi完成签到 ,获得积分10
6秒前
钟哈哈应助丘奇采纳,获得50
6秒前
自觉的秋蝶完成签到,获得积分10
7秒前
无情人达完成签到,获得积分10
7秒前
小蘑菇应助cunzhang采纳,获得10
7秒前
7秒前
srx完成签到,获得积分10
7秒前
耀学菜菜发布了新的文献求助10
8秒前
可靠靖琪发布了新的文献求助10
8秒前
杨雅文完成签到,获得积分20
9秒前
9秒前
香蕉觅云应助背后海亦采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942