Polarimetric monocular leaf normal estimation model for plant phenotyping

计算机科学 稳健性(进化) 人工智能 计算机视觉 镜面反射 单眼 极化(电化学) 旋光法 像素 遥感 算法 光学 散射 地质学 物理 基因 生物化学 物理化学 化学
作者
Fuduo Xue,Bashar Elnashef,Weiqi Jin,Sagi Filin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 142-157 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.05.029
摘要

We develop in this paper an accurate, pixel-level, plant leaf normal estimation model by a single polarization image. Though traditional sensing can generate leaf 3-D surface information, these techniques are limited in application because of sensor cost and acquisition-time-related considerations. To achieve the detailed and monocular estimation capacity, we propose a novel surface polarization reflection model that considers a mixture of diffuse or specular reflections and describes the actual reflection process more accurately than prevailing models. Our model also directly corresponds with the recorded polarization states, allowing for direct implementation, no additional computational cost, and no requirement for prior knowledge. We also propose a new strategy to disambiguate the normal solution associated with polarization-based imaging. In contrast to existing methods, which use auxiliary sensory information for the disambiguation, we derive a coarse normal map directly from our image data using an off-the-shelf convolutional neural network. Consequently, we facilitate instantaneous data acquisition, which is essential when modeling dynamic non-rigid objects. Using the coarse normal map as a constraint and optimizing optical smoothness properties makes our estimated outcome more accurate than state-of-the-art results. Experiments show that our median normal angular error is 5.6°, offering a threefold improvement to current polarimetric methods and equivalent or better than what SfM-MVS methods provide, yet using only a single image. Our leaf orientation map is also more detailed than existing methods while exhibiting robustness to polarization image noise and the guiding depth map quality. Hence, by a single polarization image, we obtain high-quality surface normal data with no additional aid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ac发布了新的文献求助10
刚刚
章半仙完成签到,获得积分10
1秒前
Akim应助九九采纳,获得10
1秒前
愿景完成签到,获得积分10
1秒前
lee发布了新的文献求助10
1秒前
高兴断秋发布了新的文献求助10
1秒前
AR发布了新的文献求助10
1秒前
abc完成签到,获得积分10
2秒前
迷路芝麻完成签到,获得积分10
3秒前
小点点发布了新的文献求助10
4秒前
赘婿应助悲伤的小奶酪采纳,获得10
4秒前
李李丽丽丽丽完成签到,获得积分10
4秒前
我根本没长尾巴完成签到,获得积分10
4秒前
5秒前
学吧完成签到 ,获得积分10
5秒前
温馨发布了新的文献求助10
5秒前
罐罐儿完成签到,获得积分0
5秒前
平安喜楽发布了新的文献求助10
6秒前
清脆雪巧完成签到,获得积分10
6秒前
强哥完成签到,获得积分10
6秒前
科研通AI2S应助瞌睡米线采纳,获得10
7秒前
chxxy发布了新的文献求助30
7秒前
简单的元珊完成签到,获得积分10
7秒前
8秒前
用户5063899完成签到,获得积分10
9秒前
9秒前
keke完成签到,获得积分20
9秒前
LMZ发布了新的文献求助10
9秒前
一一完成签到,获得积分10
9秒前
9秒前
kevin完成签到,获得积分10
9秒前
彭于晏应助orgtbb采纳,获得10
9秒前
10秒前
罗coming完成签到,获得积分10
10秒前
黄啟付完成签到,获得积分20
11秒前
yyy完成签到,获得积分10
11秒前
小七完成签到,获得积分10
11秒前
Lawrence发布了新的文献求助10
11秒前
yanzilin完成签到 ,获得积分10
11秒前
简单花花完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570