已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Polarimetric monocular leaf normal estimation model for plant phenotyping

计算机科学 稳健性(进化) 人工智能 计算机视觉 镜面反射 单眼 极化(电化学) 旋光法 像素 遥感 算法 光学 散射 地质学 物理 基因 生物化学 物理化学 化学
作者
Fuduo Xue,Bashar Elnashef,Weiqi Jin,Sagi Filin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 142-157 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.05.029
摘要

We develop in this paper an accurate, pixel-level, plant leaf normal estimation model by a single polarization image. Though traditional sensing can generate leaf 3-D surface information, these techniques are limited in application because of sensor cost and acquisition-time-related considerations. To achieve the detailed and monocular estimation capacity, we propose a novel surface polarization reflection model that considers a mixture of diffuse or specular reflections and describes the actual reflection process more accurately than prevailing models. Our model also directly corresponds with the recorded polarization states, allowing for direct implementation, no additional computational cost, and no requirement for prior knowledge. We also propose a new strategy to disambiguate the normal solution associated with polarization-based imaging. In contrast to existing methods, which use auxiliary sensory information for the disambiguation, we derive a coarse normal map directly from our image data using an off-the-shelf convolutional neural network. Consequently, we facilitate instantaneous data acquisition, which is essential when modeling dynamic non-rigid objects. Using the coarse normal map as a constraint and optimizing optical smoothness properties makes our estimated outcome more accurate than state-of-the-art results. Experiments show that our median normal angular error is 5.6°, offering a threefold improvement to current polarimetric methods and equivalent or better than what SfM-MVS methods provide, yet using only a single image. Our leaf orientation map is also more detailed than existing methods while exhibiting robustness to polarization image noise and the guiding depth map quality. Hence, by a single polarization image, we obtain high-quality surface normal data with no additional aid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助呼斯冷采纳,获得10
刚刚
GQC发布了新的文献求助10
刚刚
455发布了新的文献求助10
2秒前
2秒前
cyy发布了新的文献求助10
2秒前
2秒前
乔凌云发布了新的文献求助10
3秒前
3秒前
所所应助Morii采纳,获得10
3秒前
天宇南神完成签到 ,获得积分10
3秒前
xiaomeng完成签到 ,获得积分10
4秒前
5秒前
和abc发布了新的文献求助10
5秒前
EadonChen发布了新的文献求助10
6秒前
机灵的忆梅完成签到 ,获得积分10
7秒前
7秒前
Bosen发布了新的文献求助30
7秒前
科研通AI6.1应助调皮飞雪采纳,获得10
9秒前
10秒前
611发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
木蝴蝶发布了新的文献求助10
12秒前
12秒前
scanker1981完成签到,获得积分10
13秒前
123姚完成签到,获得积分10
13秒前
Zer应助自然卷卷卷采纳,获得10
13秒前
冷艳的纸鹤完成签到,获得积分10
14秒前
14秒前
Hello应助闪闪的绿兰采纳,获得10
14秒前
呼斯冷发布了新的文献求助10
15秒前
fancy完成签到,获得积分10
15秒前
黄123huang_完成签到,获得积分10
16秒前
17秒前
情怀应助心灵美灵波采纳,获得30
17秒前
swallow发布了新的文献求助10
17秒前
smart发布了新的文献求助10
19秒前
19秒前
柚子发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938