Polarimetric monocular leaf normal estimation model for plant phenotyping

计算机科学 稳健性(进化) 人工智能 计算机视觉 镜面反射 单眼 极化(电化学) 旋光法 像素 遥感 算法 光学 散射 地质学 物理 基因 生物化学 物理化学 化学
作者
Fuduo Xue,Bashar Elnashef,Weiqi Jin,Sagi Filin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 142-157 被引量:1
标识
DOI:10.1016/j.isprsjprs.2023.05.029
摘要

We develop in this paper an accurate, pixel-level, plant leaf normal estimation model by a single polarization image. Though traditional sensing can generate leaf 3-D surface information, these techniques are limited in application because of sensor cost and acquisition-time-related considerations. To achieve the detailed and monocular estimation capacity, we propose a novel surface polarization reflection model that considers a mixture of diffuse or specular reflections and describes the actual reflection process more accurately than prevailing models. Our model also directly corresponds with the recorded polarization states, allowing for direct implementation, no additional computational cost, and no requirement for prior knowledge. We also propose a new strategy to disambiguate the normal solution associated with polarization-based imaging. In contrast to existing methods, which use auxiliary sensory information for the disambiguation, we derive a coarse normal map directly from our image data using an off-the-shelf convolutional neural network. Consequently, we facilitate instantaneous data acquisition, which is essential when modeling dynamic non-rigid objects. Using the coarse normal map as a constraint and optimizing optical smoothness properties makes our estimated outcome more accurate than state-of-the-art results. Experiments show that our median normal angular error is 5.6°, offering a threefold improvement to current polarimetric methods and equivalent or better than what SfM-MVS methods provide, yet using only a single image. Our leaf orientation map is also more detailed than existing methods while exhibiting robustness to polarization image noise and the guiding depth map quality. Hence, by a single polarization image, we obtain high-quality surface normal data with no additional aid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野生修狗完成签到 ,获得积分10
刚刚
fufufu123完成签到,获得积分10
1秒前
小马甲应助可爱迪采纳,获得10
1秒前
jinzhen发布了新的文献求助10
1秒前
张勇振完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
memedaaaah完成签到,获得积分10
2秒前
2秒前
fangqian0000完成签到,获得积分10
3秒前
3秒前
传奇3应助一期一会采纳,获得10
4秒前
hah发布了新的文献求助10
5秒前
5秒前
露露子完成签到,获得积分10
6秒前
JQ发布了新的文献求助10
6秒前
Yikepp发布了新的文献求助10
8秒前
8秒前
8秒前
共享精神应助华熙采纳,获得10
9秒前
小叶子发布了新的文献求助10
9秒前
汉堡包应助DY采纳,获得10
10秒前
光亮向露发布了新的文献求助10
10秒前
10秒前
10秒前
123456完成签到,获得积分20
10秒前
阿诺应助DZ采纳,获得30
11秒前
科研通AI6.1应助美妞儿~采纳,获得10
11秒前
Star1983发布了新的文献求助10
11秒前
英姑应助小毛采纳,获得10
11秒前
雪白依云完成签到 ,获得积分10
11秒前
英勇海发布了新的文献求助10
11秒前
wanci应助乘风采纳,获得10
12秒前
ouyekk完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
萌羊发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933