High-Resolution Feature Pyramid Network for Small Object Detection on Drone View

计算机科学 特征(语言学) 人工智能 棱锥(几何) 冗余(工程) 目标检测 骨干网 比例(比率) 计算机视觉 背景(考古学) 特征提取 模式识别(心理学) 数学 地理 计算机网络 哲学 语言学 几何学 地图学 考古 操作系统
作者
Zhaodong Chen,Hongbing Ji,Yongquan Zhang,Zhigang Zhu,Yifan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 475-489 被引量:9
标识
DOI:10.1109/tcsvt.2023.3286896
摘要

Object detection has developed rapidly with the help of deep learning technologies recent years. However, object detection on drone view remains challenging due to two main reasons: (1) It is difficult to detect small-scale objects lacking detailed information. (2) The diversity of camera angles of drones brings dramatic differences in object scale. Although feature pyramid network (FPN) alleviates the problem caused by scale difference to some extent, it also retains some worthless features, which wastes resources and slows down the speed. In this work, we propose a novel High-Resolution Feature Pyramid Network (HR-FPN) to improve the detection accuracy of small-scale objects and avoid feature redundancy. The key components of HR-FPN include a high-resolution feature alignment module (HRFA), a high-resolution feature fusion module (HRFF) and a multi-scale decoupled head (MSDH). HRFA feeds multi-scale features from backbone into parallel resampling channels to obtain high-resolution features at the same scale. HRFF establishes a bottom-up path to distribute context-rich low-level semantic information to all layers that are then aggregated into classification feature and localization feature. MSDH cope with the scale difference of objects by predicting the categories and locations corresponding to different scales of objects separately. Moreover, we train model by scale-weighted loss to focus more on small-scale objects. Extensive experiments and comprehensive evaluations demonstrate the effectiveness and advancement of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
skyer1发布了新的文献求助10
1秒前
3秒前
4秒前
敏感的惜文完成签到,获得积分10
5秒前
橘朵方差发布了新的文献求助10
6秒前
神勇中道完成签到,获得积分10
6秒前
daguan完成签到,获得积分10
6秒前
7秒前
7秒前
于晏孙完成签到,获得积分10
9秒前
9秒前
按住心动完成签到,获得积分20
11秒前
搜集达人应助天天小女孩采纳,获得10
13秒前
科目三应助胖哥采纳,获得10
17秒前
共享精神应助jiangshi90采纳,获得10
18秒前
英俊的铭应助whx采纳,获得10
19秒前
19秒前
20秒前
巡山小钻风完成签到,获得积分10
23秒前
坚强的赛凤完成签到,获得积分10
23秒前
23秒前
24秒前
小李完成签到,获得积分10
25秒前
weirdo发布了新的文献求助10
25秒前
25秒前
mendicant发布了新的文献求助10
25秒前
26秒前
小小牛完成签到,获得积分10
26秒前
我是老大应助舒心的语芹采纳,获得10
27秒前
欢呼的晓夏完成签到 ,获得积分10
27秒前
cctv18应助洞悉采纳,获得10
28秒前
知性的剑身完成签到,获得积分10
29秒前
胡说八道完成签到 ,获得积分10
29秒前
30秒前
30秒前
胖哥发布了新的文献求助10
30秒前
30秒前
CodeCraft应助轻吟采纳,获得10
31秒前
九耳久知发布了新的文献求助10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243688
求助须知:如何正确求助?哪些是违规求助? 2887542
关于积分的说明 8248974
捐赠科研通 2556261
什么是DOI,文献DOI怎么找? 1384337
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625776