High-Resolution Feature Pyramid Network for Small Object Detection on Drone View

计算机科学 特征(语言学) 人工智能 棱锥(几何) 冗余(工程) 目标检测 骨干网 比例(比率) 计算机视觉 背景(考古学) 特征提取 模式识别(心理学) 数学 地理 计算机网络 哲学 语言学 几何学 地图学 考古 操作系统
作者
Zhaodong Chen,Hongbing Ji,Yongquan Zhang,Zhigang Zhu,Yifan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 475-489 被引量:17
标识
DOI:10.1109/tcsvt.2023.3286896
摘要

Object detection has developed rapidly with the help of deep learning technologies recent years. However, object detection on drone view remains challenging due to two main reasons: (1) It is difficult to detect small-scale objects lacking detailed information. (2) The diversity of camera angles of drones brings dramatic differences in object scale. Although feature pyramid network (FPN) alleviates the problem caused by scale difference to some extent, it also retains some worthless features, which wastes resources and slows down the speed. In this work, we propose a novel High-Resolution Feature Pyramid Network (HR-FPN) to improve the detection accuracy of small-scale objects and avoid feature redundancy. The key components of HR-FPN include a high-resolution feature alignment module (HRFA), a high-resolution feature fusion module (HRFF) and a multi-scale decoupled head (MSDH). HRFA feeds multi-scale features from backbone into parallel resampling channels to obtain high-resolution features at the same scale. HRFF establishes a bottom-up path to distribute context-rich low-level semantic information to all layers that are then aggregated into classification feature and localization feature. MSDH cope with the scale difference of objects by predicting the categories and locations corresponding to different scales of objects separately. Moreover, we train model by scale-weighted loss to focus more on small-scale objects. Extensive experiments and comprehensive evaluations demonstrate the effectiveness and advancement of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
刚刚
刚刚
Twikky发布了新的文献求助10
1秒前
1秒前
小马甲应助芒果采纳,获得10
2秒前
2秒前
心想事成完成签到,获得积分10
4秒前
隐形曼青应助噔噔噔噔采纳,获得10
4秒前
wei发布了新的文献求助10
4秒前
Nature完成签到,获得积分10
4秒前
樱桃苏打水完成签到,获得积分10
5秒前
zhui发布了新的文献求助10
5秒前
金色热浪发布了新的文献求助10
5秒前
pinging应助讲你ing采纳,获得10
7秒前
小九完成签到 ,获得积分10
8秒前
华仔应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
ivy应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
喵酱完成签到,获得积分10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
敬老院N号应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得30
10秒前
淡定的思松应助ww采纳,获得10
10秒前
cxh发布了新的文献求助10
11秒前
11秒前
winstar完成签到,获得积分10
11秒前
Amai发布了新的文献求助20
12秒前
langzi发布了新的文献求助10
12秒前
ZH的天方夜谭完成签到,获得积分20
12秒前
酷波er应助Rrr采纳,获得10
12秒前
Rhodomyrtus关注了科研通微信公众号
12秒前
wei完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794