A Dual-branch Enhanced Multi-task Learning Network for Multimodal Sentiment Analysis

计算机科学 模式 模态(人机交互) 人工智能 特征(语言学) 情态动词 任务(项目管理) 一般化 对偶(语法数字) 机器学习 深度学习 互补性(分子生物学) 数学 工程类 系统工程 高分子化学 艺术 化学 社会学 哲学 数学分析 文学类 生物 遗传学 语言学 社会科学
作者
Wenxiu Geng,Xiangxian Li,Yu Bian
标识
DOI:10.1145/3591106.3592260
摘要

Multimodal sentiment analysis is a complex research problem. Firstly, current multimodal approaches fail to adequately consider the intricate multi-level correspondence between modalities and the unique contextual information within each modality; secondly, cross-modal fusion methods for inter-modal fusion somewhat weaken the mode-specific internal features, which is a limitation of the traditional single-branch model. To this end, we proposes a dual-branch enhanced multi-task learning network (DBEM), a new architecture that considers both the multiple dependencies of sequences and the heterogeneity of multimodal data, for better multimodal sentiment analysis. The global-local branch takes into account the intra-modal dependencies of different length time subsequences and aggregates global and local features to enrich the feature diversity. The cross-refine branch considers the difference in information density of different modalities and adopts coarse-to-fine fusion learning to model the inter-modal dependencies. Coarse-grained fusion achieves low-level feature reinforcement of audio and visual modalities, and fine-grained fusion improves the ability to integrate information complementarity between different levels of modalities. Finally, multi-task learning is carried out to improve the generalization and performance of the model based on the enhanced fusion features obtained from the dual-branch network. Compared with the single branch network (SBEM, variant of DBEM model) and SOTA methods, the experimental results on the two datasets CH-SIMS and CMU-MOSEI validate the effectiveness of the DBEM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的猪完成签到,获得积分20
1秒前
expuery完成签到,获得积分10
1秒前
小满完成签到,获得积分10
2秒前
2秒前
orixero应助hhhee采纳,获得10
3秒前
4秒前
5秒前
5秒前
5秒前
NexusExplorer应助cgjj采纳,获得10
5秒前
CodeCraft应助fxx采纳,获得10
5秒前
深情安青应助如你所liao采纳,获得10
5秒前
金牌追梦人关注了科研通微信公众号
6秒前
6秒前
浮游应助沙耶酱采纳,获得10
6秒前
6秒前
7秒前
开心最重要完成签到,获得积分10
7秒前
stacy发布了新的文献求助10
7秒前
顺利秋灵发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Ss发布了新的文献求助10
9秒前
英俊的铭应助彩色方盒采纳,获得10
9秒前
9秒前
徐恭完成签到 ,获得积分10
9秒前
juju816完成签到,获得积分10
10秒前
年轻丸子发布了新的文献求助10
10秒前
10秒前
尊敬凝荷完成签到,获得积分10
11秒前
cing发布了新的文献求助10
11秒前
Hello应助五月天采纳,获得10
11秒前
852应助LJ采纳,获得10
11秒前
11秒前
桐桐应助张磊采纳,获得10
11秒前
汉堡包应助YXY采纳,获得10
11秒前
11秒前
11秒前
科研白发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355