HRST-LR: A Hessian Regularization Spatio-Temporal Low Rank Algorithm for Traffic Data Imputation

黑森矩阵 正规化(语言学) 计算机科学 算法 人工智能 数据挖掘 数学 缺少数据 应用数学 机器学习
作者
Xiuqin Xu,Ming‐Wei Lin,Xin Luo,Zeshui Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11001-11017 被引量:69
标识
DOI:10.1109/tits.2023.3279321
摘要

Intelligent Transportation Systems (ITSs) are vital for alleviating traffic congestion and improving traffic efficiency. Due to the delay of network transmission and failure of detectors, massive missing traffic data are often produced in ITSs, which evidently decreases the accuracy of decision-making in road traffic management. Hence, how establishing a precise and efficient estimation of missing traffic data becomes a hot yet thorny issue. Low-rank matrix completion (LR-MC) model has proven to be highly effective to address this issue owing to its fine representativeness of such high-dimensional and incomplete data. However, the existing LR-MC models mostly fail to model the inherently temporal and spatial correlations hidden in traffic network structure, resulting in low estimation accuracy. To improve it, this paper proposes a Hessian regularization spatio-temporal low rank (HRST-LR) algorithm with three main-fold ideas: a) imposing low-rank property into the global features of a traffic matrix for precisely learning its structure, b) capturing the temporal evolvement via a second-order difference of time-series constraint, and c) modeling the similar space of road segments through a Hessian regularization spatial constraint, thus exploring the local correlation between road segments for representing the spatial patterns in the traffic data. Experimental results on four traffic data sets prove that HRST-LR outperforms several state-of-the-art methods in the missing traffic data estimation with the root mean squared error improvements often higher than 14% when the missing rate is 90%. Hence, the HRST-LR algorithm is highly valuable for traffic data imputation with the need of performing spatio-temporal low-rank analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
郭濹涵发布了新的文献求助10
1秒前
2秒前
阳光彩虹小白马关注了科研通微信公众号
2秒前
星辰大海应助QIQI采纳,获得10
2秒前
875259完成签到,获得积分10
3秒前
3秒前
ding应助恩恩天天开心采纳,获得10
3秒前
打打应助现代的糖豆采纳,获得10
3秒前
科目三应助第七个星球采纳,获得10
3秒前
Sue完成签到 ,获得积分10
3秒前
英姑应助HEANZ采纳,获得10
3秒前
梧桐完成签到,获得积分10
3秒前
盒子完成签到,获得积分10
3秒前
Yuki发布了新的文献求助10
4秒前
tangzanwayne发布了新的文献求助10
4秒前
睡觉大王完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
精明的飞槐完成签到,获得积分10
5秒前
YUE完成签到,获得积分10
5秒前
xyy发布了新的文献求助10
5秒前
6秒前
6秒前
小二郎应助qiaoyun采纳,获得10
6秒前
shouyi886发布了新的文献求助10
7秒前
7秒前
安生发布了新的文献求助10
7秒前
875259发布了新的文献求助10
7秒前
香蕉觅云应助Sue采纳,获得10
7秒前
小马甲应助LG采纳,获得30
8秒前
8秒前
科研通AI2S应助Tooth7采纳,获得10
8秒前
朱小燕发布了新的文献求助10
8秒前
南吕十八发布了新的文献求助30
8秒前
liuchair发布了新的文献求助30
9秒前
gggggggdde完成签到,获得积分10
9秒前
yy发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894