HRST-LR: A Hessian Regularization Spatio-Temporal Low Rank Algorithm for Traffic Data Imputation

黑森矩阵 正规化(语言学) 计算机科学 算法 人工智能 数据挖掘 数学 缺少数据 应用数学 机器学习
作者
Xiuqin Xu,Ming‐Wei Lin,Xin Luo,Zeshui Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11001-11017 被引量:28
标识
DOI:10.1109/tits.2023.3279321
摘要

Intelligent Transportation Systems (ITSs) are vital for alleviating traffic congestion and improving traffic efficiency. Due to the delay of network transmission and failure of detectors, massive missing traffic data are often produced in ITSs, which evidently decreases the accuracy of decision-making in road traffic management. Hence, how establishing a precise and efficient estimation of missing traffic data becomes a hot yet thorny issue. Low-rank matrix completion (LR-MC) model has proven to be highly effective to address this issue owing to its fine representativeness of such high-dimensional and incomplete data. However, the existing LR-MC models mostly fail to model the inherently temporal and spatial correlations hidden in traffic network structure, resulting in low estimation accuracy. To improve it, this paper proposes a Hessian regularization spatio-temporal low rank (HRST-LR) algorithm with three main-fold ideas: a) imposing low-rank property into the global features of a traffic matrix for precisely learning its structure, b) capturing the temporal evolvement via a second-order difference of time-series constraint, and c) modeling the similar space of road segments through a Hessian regularization spatial constraint, thus exploring the local correlation between road segments for representing the spatial patterns in the traffic data. Experimental results on four traffic data sets prove that HRST-LR outperforms several state-of-the-art methods in the missing traffic data estimation with the root mean squared error improvements often higher than 14% when the missing rate is 90%. Hence, the HRST-LR algorithm is highly valuable for traffic data imputation with the need of performing spatio-temporal low-rank analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜匕发布了新的文献求助10
刚刚
清脆慕山发布了新的文献求助10
1秒前
2秒前
风中刺猬完成签到,获得积分10
5秒前
iNk应助小明采纳,获得10
6秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
7秒前
8秒前
8秒前
JamesPei应助22222采纳,获得10
9秒前
英俊的铭应助科研小锄头采纳,获得10
11秒前
11秒前
Self发布了新的文献求助10
12秒前
充电宝应助啾啾咪咪采纳,获得10
14秒前
失眠的易绿完成签到 ,获得积分10
15秒前
LZL发布了新的文献求助10
15秒前
16秒前
小马甲应助想瘦的海豹采纳,获得10
17秒前
Jasper应助谦让的小姜采纳,获得10
18秒前
19秒前
糊涂的剑完成签到,获得积分10
19秒前
20秒前
dddduan完成签到,获得积分20
21秒前
糊涂的剑发布了新的文献求助10
22秒前
25秒前
璇儿完成签到,获得积分10
25秒前
雪sung完成签到,获得积分10
25秒前
超级无敌暴龙战士完成签到,获得积分10
26秒前
22222发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
香蕉觅云应助开朗的榴莲采纳,获得10
28秒前
28秒前
28秒前
上官若男应助糊涂的剑采纳,获得10
28秒前
xiayil完成签到,获得积分10
28秒前
活泼的亦绿完成签到,获得积分20
29秒前
羊yang发布了新的文献求助10
30秒前
31秒前
白樱恋曲发布了新的文献求助10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046