HRST-LR: A Hessian Regularization Spatio-Temporal Low Rank Algorithm for Traffic Data Imputation

黑森矩阵 正规化(语言学) 计算机科学 算法 人工智能 数据挖掘 数学 缺少数据 应用数学 机器学习
作者
Xiuqin Xu,Ming‐Wei Lin,Xin Luo,Zeshui Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11001-11017 被引量:69
标识
DOI:10.1109/tits.2023.3279321
摘要

Intelligent Transportation Systems (ITSs) are vital for alleviating traffic congestion and improving traffic efficiency. Due to the delay of network transmission and failure of detectors, massive missing traffic data are often produced in ITSs, which evidently decreases the accuracy of decision-making in road traffic management. Hence, how establishing a precise and efficient estimation of missing traffic data becomes a hot yet thorny issue. Low-rank matrix completion (LR-MC) model has proven to be highly effective to address this issue owing to its fine representativeness of such high-dimensional and incomplete data. However, the existing LR-MC models mostly fail to model the inherently temporal and spatial correlations hidden in traffic network structure, resulting in low estimation accuracy. To improve it, this paper proposes a Hessian regularization spatio-temporal low rank (HRST-LR) algorithm with three main-fold ideas: a) imposing low-rank property into the global features of a traffic matrix for precisely learning its structure, b) capturing the temporal evolvement via a second-order difference of time-series constraint, and c) modeling the similar space of road segments through a Hessian regularization spatial constraint, thus exploring the local correlation between road segments for representing the spatial patterns in the traffic data. Experimental results on four traffic data sets prove that HRST-LR outperforms several state-of-the-art methods in the missing traffic data estimation with the root mean squared error improvements often higher than 14% when the missing rate is 90%. Hence, the HRST-LR algorithm is highly valuable for traffic data imputation with the need of performing spatio-temporal low-rank analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助CBWKEYANTONG123采纳,获得10
刚刚
xin6688应助奔奔采纳,获得10
1秒前
田様应助神勇健柏采纳,获得10
1秒前
1秒前
1秒前
1秒前
zzzy发布了新的文献求助10
2秒前
2秒前
2秒前
充电宝应助球球采纳,获得10
3秒前
4秒前
Hilda007应助高兴123采纳,获得10
5秒前
热心的巧克力完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助yon采纳,获得10
5秒前
6秒前
6秒前
6秒前
复杂从梦完成签到,获得积分10
7秒前
小胖卷毛完成签到,获得积分10
7秒前
7秒前
反之完成签到,获得积分10
7秒前
ye完成签到,获得积分10
8秒前
神勇健柏完成签到,获得积分10
8秒前
hgc发布了新的文献求助20
8秒前
啦啦啦~完成签到,获得积分10
9秒前
华仔应助欣喜的香彤采纳,获得10
9秒前
9秒前
9秒前
9秒前
小马甲应助雪白亦旋采纳,获得10
10秒前
10秒前
10秒前
11秒前
GarrickO完成签到,获得积分10
12秒前
科目三应助屋巫奈奈采纳,获得10
12秒前
13秒前
13秒前
活泼无敌完成签到,获得积分10
13秒前
爆米花应助小虾米采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572