HRST-LR: A Hessian Regularization Spatio-Temporal Low Rank Algorithm for Traffic Data Imputation

黑森矩阵 正规化(语言学) 计算机科学 算法 人工智能 数据挖掘 数学 缺少数据 应用数学 机器学习
作者
Xiuqin Xu,Ming‐Wei Lin,Xin Luo,Zeshui Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11001-11017 被引量:28
标识
DOI:10.1109/tits.2023.3279321
摘要

Intelligent Transportation Systems (ITSs) are vital for alleviating traffic congestion and improving traffic efficiency. Due to the delay of network transmission and failure of detectors, massive missing traffic data are often produced in ITSs, which evidently decreases the accuracy of decision-making in road traffic management. Hence, how establishing a precise and efficient estimation of missing traffic data becomes a hot yet thorny issue. Low-rank matrix completion (LR-MC) model has proven to be highly effective to address this issue owing to its fine representativeness of such high-dimensional and incomplete data. However, the existing LR-MC models mostly fail to model the inherently temporal and spatial correlations hidden in traffic network structure, resulting in low estimation accuracy. To improve it, this paper proposes a Hessian regularization spatio-temporal low rank (HRST-LR) algorithm with three main-fold ideas: a) imposing low-rank property into the global features of a traffic matrix for precisely learning its structure, b) capturing the temporal evolvement via a second-order difference of time-series constraint, and c) modeling the similar space of road segments through a Hessian regularization spatial constraint, thus exploring the local correlation between road segments for representing the spatial patterns in the traffic data. Experimental results on four traffic data sets prove that HRST-LR outperforms several state-of-the-art methods in the missing traffic data estimation with the root mean squared error improvements often higher than 14% when the missing rate is 90%. Hence, the HRST-LR algorithm is highly valuable for traffic data imputation with the need of performing spatio-temporal low-rank analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
风萧萧兮易水寒完成签到,获得积分10
4秒前
Lxx完成签到,获得积分10
4秒前
一一完成签到,获得积分10
6秒前
6秒前
6秒前
Allon完成签到 ,获得积分20
7秒前
9秒前
只铃子发布了新的文献求助10
10秒前
脑洞疼应助李咏贤采纳,获得10
10秒前
kitchup发布了新的文献求助30
11秒前
wfwt88发布了新的文献求助10
11秒前
小马甲应助yiyi采纳,获得10
13秒前
燕子发布了新的文献求助30
13秒前
安静海露发布了新的文献求助10
14秒前
khaosyi完成签到 ,获得积分10
14秒前
彭于晏应助maoy采纳,获得10
17秒前
钟小熊完成签到,获得积分10
18秒前
薄荷微凉关注了科研通微信公众号
21秒前
22秒前
搜集达人应助啦啦啦采纳,获得30
23秒前
爆米花应助啦啦啦啦采纳,获得10
24秒前
领导范儿应助小韩同学采纳,获得10
25秒前
梨花酒完成签到,获得积分10
26秒前
糖糖发布了新的文献求助10
27秒前
31秒前
35秒前
小韩同学发布了新的文献求助10
37秒前
zzt发布了新的文献求助10
38秒前
故意的山河完成签到,获得积分10
38秒前
jin应助Charlie采纳,获得20
38秒前
量子星尘发布了新的文献求助10
40秒前
人间完成签到,获得积分10
41秒前
43秒前
xin发布了新的文献求助10
44秒前
某慧发布了新的文献求助20
48秒前
糖糖完成签到,获得积分10
49秒前
maoy发布了新的文献求助10
49秒前
49秒前
湘湘完成签到,获得积分10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021