SymptomGraph: Identifying Symptom Clusters from Narrative Clinical Notes using Graph Clustering

聚类分析 医学 认知 图形 叙述的 计算机科学 人工智能 自然语言处理 精神科 理论计算机科学 语言学 哲学
作者
Fattah Muhammad Tahabi,Susan Storey,Xiao Luo
标识
DOI:10.1145/3555776.3577685
摘要

Patients with cancer or other chronic diseases often experience different symptoms before or after treatments. The symptoms could be physical, gastrointestinal, psychological, or cognitive (memory loss), or other types. Previous research focuses on understanding the individual symptoms or symptom correlations by collecting data through symptom surveys and using traditional statistical methods to analyze the symptoms, such as principal component analysis or factor analysis. This research proposes a computational system, SymptomGraph, to identify the symptom clusters in the narrative text of written clinical notes in electronic health records (EHR). SymptomGraph is developed to use a set of natural language processing (NLP) and artificial intelligence (AI) methods to first extract the clinician-documented symptoms from clinical notes. Then, a semantic symptom expression clustering method is used to discover a set of typical symptoms. A symptom graph is built based on the co-occurrences of the symptoms. Finally, a graph clustering algorithm is developed to discover the symptom clusters. Although SymptomGraph is applied to the narrative clinical notes, it can be adapted to analyze symptom survey data. We applied Symptom-Graph on a colorectal cancer patient with and without diabetes (Type 2) data set to detect the patient symptom clusters one year after the chemotherapy. Our results show that SymptomGraph can identify the typical symptom clusters of colorectal cancer patients' post-chemotherapy. The results also show that colorectal cancer patients with diabetes often show more symptoms of peripheral neuropathy, younger patients have mental dysfunctions of alcohol or tobacco abuse, and patients at later cancer stages show more memory loss symptoms. Our system can be generalized to extract and analyze symptom clusters of other chronic diseases or acute diseases like COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy完成签到,获得积分10
1秒前
士多碑李发布了新的文献求助10
1秒前
个性南莲完成签到,获得积分10
1秒前
FYm完成签到,获得积分10
2秒前
淡淡的晓筠完成签到,获得积分10
2秒前
淡定发布了新的文献求助10
2秒前
调研昵称发布了新的文献求助10
3秒前
minifox完成签到,获得积分10
3秒前
Xx丶完成签到,获得积分10
4秒前
YuHang.Lu完成签到,获得积分10
6秒前
一家人完成签到,获得积分0
7秒前
调研昵称发布了新的文献求助10
7秒前
jiegelaile完成签到,获得积分20
7秒前
神说要有光完成签到,获得积分10
7秒前
8秒前
王旭智完成签到,获得积分10
8秒前
科目三三次郎完成签到 ,获得积分10
8秒前
9秒前
9秒前
qin完成签到,获得积分10
10秒前
puzhongjiMiQ发布了新的文献求助10
10秒前
浮生若梦完成签到 ,获得积分10
12秒前
CodeCraft应助科研小白白采纳,获得10
12秒前
12秒前
小雅完成签到 ,获得积分10
12秒前
晓军发布了新的文献求助10
13秒前
科研通AI2S应助风中的丝袜采纳,获得10
13秒前
yeyi9851应助风中的丝袜采纳,获得10
13秒前
yeyi9851应助风中的丝袜采纳,获得10
13秒前
拾柒完成签到,获得积分10
13秒前
岁月间完成签到,获得积分10
14秒前
14秒前
思源应助淡定采纳,获得10
14秒前
14秒前
安然完成签到 ,获得积分10
15秒前
15秒前
15秒前
tina完成签到 ,获得积分10
16秒前
冷酷的啤酒完成签到,获得积分10
16秒前
蓝色sea完成签到,获得积分10
16秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793801
关于积分的说明 7807889
捐赠科研通 2450113
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350