An enhanced grey wolf optimizer boosted machine learning prediction model for patient-flow prediction

计算机科学 水准点(测量) 支持向量机 人工智能 大数据 机器学习 随机森林 数据挖掘 大地测量学 地理
作者
Xiang Zhang,Bin Lu,Lyuzheng Zhang,Zhifang Pan,Minjie Liao,Huihui Shen,Zhang Li,Lei Liu,Zuxiang Li,YiPao Hu,Zhihong Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107166-107166 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.107166
摘要

Large and medium-sized general hospitals have adopted artificial intelligence big data systems to optimize the management of medical resources to improve the quality of hospital outpatient services and decrease patient wait times in recent years as a result of the development of medical information technology and the rise of big medical data. However, owing to the impact of several elements, including the physical environment, patient, and physician behaviours, the real optimum treatment effect does not meet expectations. In order to promote orderly patient access, this work provides a patient-flow prediction model that takes into account shifting dynamics and objective rules of patient-flow to handle this issue and forecast patients' medical requirements. First, we propose a high-performance optimization method (SRXGWO) and integrate the Sobol sequence, Cauchy random replacement strategy, and directional mutation mechanism into the grey wolf optimization (GWO) algorithm. The patient-flow prediction model (SRXGWO-SVR) is then proposed using SRXGWO to optimize the parameters of support vector regression (SVR). Twelve high-performance algorithms are examined in the benchmark function experiments' ablation and peer algorithm comparison tests, which are intended to validate SRXGWO's optimization performance. In order to forecast independently in the patient-flow prediction trials, the data set is split into training and test sets. The findings demonstrated that SRXGWO-SVR outperformed the other seven peer models in terms of prediction accuracy and error. As a result, SRXGWO-SVR is anticipated to be a reliable and efficient patient-flow forecast system that may help hospitals manage medical resources as effectively as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
刚刚
Hello应助孟韩采纳,获得10
刚刚
Johnny完成签到,获得积分10
1秒前
研友_VZG7GZ应助LHW采纳,获得10
1秒前
拾新发布了新的文献求助10
2秒前
殷勤的秋荷完成签到,获得积分20
2秒前
shaylie发布了新的文献求助10
3秒前
领导范儿应助优秀的枕头采纳,获得10
4秒前
温酒随行发布了新的文献求助10
4秒前
淡淡宛完成签到 ,获得积分0
5秒前
5秒前
5秒前
5秒前
Sink发布了新的文献求助10
6秒前
lili发布了新的文献求助20
8秒前
香蕉觅云应助小巧谷波采纳,获得10
8秒前
林昀发布了新的文献求助10
8秒前
爆米花应助柳大宝采纳,获得10
9秒前
善学以致用应助科研小白采纳,获得10
9秒前
10秒前
ss发布了新的文献求助10
11秒前
杨家辉发布了新的文献求助10
12秒前
12秒前
peanut发布了新的文献求助100
13秒前
沉静的怜蕾完成签到,获得积分10
13秒前
辛勤泥猴桃完成签到,获得积分10
14秒前
孟韩发布了新的文献求助10
15秒前
乐乐应助111采纳,获得10
15秒前
16秒前
ff完成签到,获得积分10
16秒前
Ava应助吉驴采纳,获得30
17秒前
18秒前
王兆烨完成签到,获得积分10
18秒前
18秒前
ww完成签到,获得积分10
19秒前
20秒前
沉默羔羊发布了新的文献求助10
22秒前
Ava应助ss采纳,获得10
22秒前
ww发布了新的文献求助10
22秒前
羊羊羊完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143