An enhanced grey wolf optimizer boosted machine learning prediction model for patient-flow prediction

计算机科学 水准点(测量) 支持向量机 人工智能 大数据 机器学习 随机森林 数据挖掘 大地测量学 地理
作者
Xiang Zhang,Bin Lu,Lyuzheng Zhang,Zhifang Pan,Minjie Liao,Huihui Shen,Zhang Li,Lei Liu,Zuxiang Li,YiPao Hu,Zhihong Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107166-107166 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.107166
摘要

Large and medium-sized general hospitals have adopted artificial intelligence big data systems to optimize the management of medical resources to improve the quality of hospital outpatient services and decrease patient wait times in recent years as a result of the development of medical information technology and the rise of big medical data. However, owing to the impact of several elements, including the physical environment, patient, and physician behaviours, the real optimum treatment effect does not meet expectations. In order to promote orderly patient access, this work provides a patient-flow prediction model that takes into account shifting dynamics and objective rules of patient-flow to handle this issue and forecast patients' medical requirements. First, we propose a high-performance optimization method (SRXGWO) and integrate the Sobol sequence, Cauchy random replacement strategy, and directional mutation mechanism into the grey wolf optimization (GWO) algorithm. The patient-flow prediction model (SRXGWO-SVR) is then proposed using SRXGWO to optimize the parameters of support vector regression (SVR). Twelve high-performance algorithms are examined in the benchmark function experiments' ablation and peer algorithm comparison tests, which are intended to validate SRXGWO's optimization performance. In order to forecast independently in the patient-flow prediction trials, the data set is split into training and test sets. The findings demonstrated that SRXGWO-SVR outperformed the other seven peer models in terms of prediction accuracy and error. As a result, SRXGWO-SVR is anticipated to be a reliable and efficient patient-flow forecast system that may help hospitals manage medical resources as effectively as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
理论界萌新完成签到,获得积分10
2秒前
胆小的滑雪er完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
蜡笔小熊发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
科研通AI5应助无情的猎豹采纳,获得10
7秒前
ty-完成签到,获得积分10
7秒前
LHC发布了新的文献求助10
7秒前
7秒前
7秒前
华仔应助小可爱采纳,获得10
8秒前
可靠的音响完成签到,获得积分10
8秒前
9秒前
YILIA发布了新的文献求助10
9秒前
YWJ完成签到,获得积分10
9秒前
10秒前
nn应助朴朴呀采纳,获得10
11秒前
踏实语海发布了新的文献求助30
12秒前
科研菜鸟发布了新的文献求助10
12秒前
13秒前
今后应助jason0023采纳,获得10
13秒前
13秒前
陈橘子皮发布了新的文献求助10
14秒前
脑洞疼应助Wency采纳,获得30
14秒前
杨建华发布了新的文献求助10
14秒前
派大兴发布了新的文献求助200
15秒前
16秒前
JamesPei应助YILIA采纳,获得10
16秒前
16秒前
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113