An enhanced grey wolf optimizer boosted machine learning prediction model for patient-flow prediction

计算机科学 水准点(测量) 支持向量机 人工智能 大数据 机器学习 随机森林 数据挖掘 大地测量学 地理
作者
Xiang Zhang,Bin Lu,Lyuzheng Zhang,Zhifang Pan,Minjie Liao,Huihui Shen,Zhang Li,Lei Liu,Zuxiang Li,YiPao Hu,Zhihong Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107166-107166 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.107166
摘要

Large and medium-sized general hospitals have adopted artificial intelligence big data systems to optimize the management of medical resources to improve the quality of hospital outpatient services and decrease patient wait times in recent years as a result of the development of medical information technology and the rise of big medical data. However, owing to the impact of several elements, including the physical environment, patient, and physician behaviours, the real optimum treatment effect does not meet expectations. In order to promote orderly patient access, this work provides a patient-flow prediction model that takes into account shifting dynamics and objective rules of patient-flow to handle this issue and forecast patients' medical requirements. First, we propose a high-performance optimization method (SRXGWO) and integrate the Sobol sequence, Cauchy random replacement strategy, and directional mutation mechanism into the grey wolf optimization (GWO) algorithm. The patient-flow prediction model (SRXGWO-SVR) is then proposed using SRXGWO to optimize the parameters of support vector regression (SVR). Twelve high-performance algorithms are examined in the benchmark function experiments' ablation and peer algorithm comparison tests, which are intended to validate SRXGWO's optimization performance. In order to forecast independently in the patient-flow prediction trials, the data set is split into training and test sets. The findings demonstrated that SRXGWO-SVR outperformed the other seven peer models in terms of prediction accuracy and error. As a result, SRXGWO-SVR is anticipated to be a reliable and efficient patient-flow forecast system that may help hospitals manage medical resources as effectively as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
1秒前
今后应助333采纳,获得10
2秒前
pu发布了新的文献求助10
3秒前
Akim应助梓榆采纳,获得10
4秒前
劼大大完成签到,获得积分10
4秒前
最优解完成签到 ,获得积分20
5秒前
5秒前
通~发布了新的文献求助10
5秒前
一段乐多完成签到,获得积分10
6秒前
6秒前
6秒前
给我找完成签到,获得积分10
7秒前
桐桐应助Yuki0616采纳,获得10
7秒前
小马甲应助鸣隐采纳,获得10
7秒前
ycd完成签到,获得积分10
8秒前
ark861023完成签到,获得积分10
8秒前
淡定问芙完成签到,获得积分10
8秒前
斯文败类应助惠惠采纳,获得10
9秒前
9秒前
Meowly完成签到,获得积分10
9秒前
10秒前
10秒前
陶醉觅夏发布了新的文献求助10
10秒前
pu完成签到,获得积分10
10秒前
小灵通完成签到,获得积分10
10秒前
给我找发布了新的文献求助10
10秒前
科研通AI2S应助LIn采纳,获得10
11秒前
gaga完成签到,获得积分10
11秒前
_Charmo完成签到,获得积分10
11秒前
Slemon完成签到,获得积分10
11秒前
谦谦姜完成签到,获得积分10
13秒前
14秒前
JINGZHANG发布了新的文献求助10
14秒前
14秒前
归海天与应助糊弄学专家采纳,获得10
14秒前
风中的青完成签到,获得积分10
15秒前
15秒前
15秒前
duxinyue关注了科研通微信公众号
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794