薄脆饼
卷积神经网络
分类器(UML)
人工智能
转化(遗传学)
深度学习
晶圆制造
模式识别(心理学)
半导体器件制造
计算机科学
人工神经网络
半导体
半导体器件建模
机器学习
工程类
电子工程
材料科学
CMOS芯片
光电子学
化学
基因
生物化学
作者
Nguyen Thi Minh Hanh,Trần Minh Đức
出处
期刊:Algorithms for intelligent systems
日期:2023-01-01
卷期号:: 327-339
标识
DOI:10.1007/978-981-99-1435-7_28
摘要
Wafer map defect pattern classification is an important task for yield enhancement in semiconductor manufacturing. In this study, we proposed a framework to classify wafer map defect classification using a deep learning model combined with data augmentation techniques for handling the imbalance of the real-world semiconductor fabrication dataset WM-811 K. We compared the combination of the three scenarios for wafer map defect classification using deep learning model Convolutional Neural Network (CNN). The experimental results of our study show that both the two data augmentation methods using geometric transformation and conditional Generative Adversarial Networks (cGAN) improve the performance of the classifier based on CNN for wafer defect classification using different evaluation metrics. The geometric transformation provides better performance in classification compared to the cGAN in our study.
科研通智能强力驱动
Strongly Powered by AbleSci AI