Combining GA-SVM and NSGA-Ⅲ multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine

制动比油耗 支持向量机 柴油 柴油机 燃料效率 汽车工程 遗传算法 多目标优化 废气再循环 氮氧化物 计算机科学 工程类 人工智能 机器学习 燃烧 内燃机 化学 有机化学
作者
Yuhua Wang,Guiyong Wang,Guozhong Yao,Qianqiao Shen,Xuan Yu,Shuchao He
出处
期刊:Energy [Elsevier]
卷期号:278: 127965-127965 被引量:27
标识
DOI:10.1016/j.energy.2023.127965
摘要

This research proposed a multi-objective optimization approach that combines Non-dominated Sorting Genetic Algorithms (NSGA) Ⅲ and support vector machine (SVM) to reduce diesel engine emissions while enhancing economic performance and calibration efficiency. In order to obtain accurate experimental data on diesel engines, a space-filling design method was proposed based on the prediction modeling of diesel engine performance. The SVM prediction model for diesel engine performance was established. A genetic algorithm (GA) was introduced to optimize the SVM model's penalty factor and radial basis parameters, thereby improving its prediction accuracy. The multi-objective optimization approach optimized the braking specific fuel consumption (BSFC), NOx, and CO. The results show that: the GA-SVM diesel engine performance prediction model has excellent prediction performance and generalization ability for BSFC, NOx, and CO, with R2 values of 0.981, 0.979, and 0.968, respectively. GA-SVM was used to evaluate the fitness of the NSGA-III optimal set. This not only ensures optimization accuracy but also improves working efficiency. After optimization, the BSFC of the diesel engine was reduced by 1.67%, NOx emission was reduced by 27.01%, CO emission was reduced by 19.15%, and noticeable optimization results were obtained. This work has important reference value for the automatic calibration of diesel engine control parameters, improving the economy and emission of diesel engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
popo完成签到,获得积分10
1秒前
1秒前
zoloft完成签到,获得积分10
1秒前
3秒前
李超完成签到,获得积分10
4秒前
方寸月光完成签到,获得积分10
4秒前
sky发布了新的文献求助10
4秒前
哇哇哇哇我应助ff采纳,获得20
6秒前
7秒前
情怀应助缓慢钢笔采纳,获得10
7秒前
MESSI10完成签到,获得积分10
7秒前
Ajigul完成签到,获得积分10
9秒前
学术通zzz发布了新的文献求助10
14秒前
烛畔旧盟完成签到,获得积分10
16秒前
开放的砖头完成签到,获得积分10
17秒前
17秒前
sky完成签到,获得积分10
20秒前
Polymer72应助li采纳,获得10
21秒前
希望天下0贩的0应助陆驳采纳,获得10
26秒前
27秒前
年少轻狂最情深完成签到,获得积分10
28秒前
Linica发布了新的文献求助10
30秒前
灰色与青完成签到,获得积分10
32秒前
35秒前
偷影子里局外人完成签到,获得积分10
36秒前
飞飞完成签到,获得积分10
37秒前
时间地点条件完成签到,获得积分10
39秒前
39秒前
40秒前
40秒前
42秒前
陆驳发布了新的文献求助10
42秒前
科研通AI2S应助激昂的飞松采纳,获得10
42秒前
43秒前
xuan完成签到,获得积分10
44秒前
abu关闭了abu文献求助
44秒前
45秒前
Re发布了新的文献求助10
46秒前
WWY完成签到,获得积分10
47秒前
研友_8WOb28发布了新的文献求助10
47秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339940
求助须知:如何正确求助?哪些是违规求助? 2967993
关于积分的说明 8631742
捐赠科研通 2647540
什么是DOI,文献DOI怎么找? 1449673
科研通“疑难数据库(出版商)”最低求助积分说明 671481
邀请新用户注册赠送积分活动 660495