Combining GA-SVM and NSGA-Ⅲ multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine

制动比油耗 支持向量机 柴油 柴油机 燃料效率 汽车工程 遗传算法 多目标优化 废气再循环 氮氧化物 计算机科学 工程类 人工智能 机器学习 燃烧 内燃机 有机化学 化学
作者
Yuhua Wang,Guiyong Wang,Guozhong Yao,Qianqiao Shen,Xuan Yu,Shuchao He
出处
期刊:Energy [Elsevier BV]
卷期号:278: 127965-127965 被引量:31
标识
DOI:10.1016/j.energy.2023.127965
摘要

This research proposed a multi-objective optimization approach that combines Non-dominated Sorting Genetic Algorithms (NSGA) Ⅲ and support vector machine (SVM) to reduce diesel engine emissions while enhancing economic performance and calibration efficiency. In order to obtain accurate experimental data on diesel engines, a space-filling design method was proposed based on the prediction modeling of diesel engine performance. The SVM prediction model for diesel engine performance was established. A genetic algorithm (GA) was introduced to optimize the SVM model's penalty factor and radial basis parameters, thereby improving its prediction accuracy. The multi-objective optimization approach optimized the braking specific fuel consumption (BSFC), NOx, and CO. The results show that: the GA-SVM diesel engine performance prediction model has excellent prediction performance and generalization ability for BSFC, NOx, and CO, with R2 values of 0.981, 0.979, and 0.968, respectively. GA-SVM was used to evaluate the fitness of the NSGA-III optimal set. This not only ensures optimization accuracy but also improves working efficiency. After optimization, the BSFC of the diesel engine was reduced by 1.67%, NOx emission was reduced by 27.01%, CO emission was reduced by 19.15%, and noticeable optimization results were obtained. This work has important reference value for the automatic calibration of diesel engine control parameters, improving the economy and emission of diesel engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的青烟完成签到,获得积分10
2秒前
豆腐青菜雨完成签到 ,获得积分10
3秒前
陈小桥完成签到,获得积分10
4秒前
自然水风完成签到,获得积分10
4秒前
6秒前
天天快乐应助毛豆爱睡觉采纳,获得10
7秒前
史灵竹完成签到,获得积分20
7秒前
平凡完成签到,获得积分10
7秒前
果心纯完成签到,获得积分10
8秒前
492754592完成签到,获得积分10
10秒前
小盆呐完成签到,获得积分10
10秒前
12秒前
充电宝应助dyc采纳,获得10
13秒前
LILYpig完成签到 ,获得积分10
14秒前
情怀应助我是微风采纳,获得10
14秒前
FIN应助黄磊采纳,获得10
15秒前
谨慎纸飞机完成签到,获得积分10
17秒前
keplek完成签到 ,获得积分10
18秒前
今后应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
阔达金鱼完成签到,获得积分10
23秒前
苏钰完成签到,获得积分10
23秒前
大猫不吃鱼完成签到,获得积分10
26秒前
糖豆子完成签到,获得积分10
26秒前
潇洒的小鸽子完成签到 ,获得积分0
27秒前
呼呼呼完成签到,获得积分10
28秒前
酷酷的碳完成签到 ,获得积分10
29秒前
我是微风完成签到,获得积分10
30秒前
skyleon完成签到,获得积分10
31秒前
六氟合铂酸氙完成签到 ,获得积分10
32秒前
小明完成签到,获得积分10
35秒前
崔宁宁完成签到 ,获得积分10
36秒前
愉快乐瑶完成签到,获得积分10
37秒前
Jerry20184完成签到 ,获得积分10
39秒前
kunny完成签到 ,获得积分10
40秒前
随风完成签到,获得积分10
41秒前
King完成签到,获得积分10
41秒前
张小度ever完成签到 ,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950005
求助须知:如何正确求助?哪些是违规求助? 3495301
关于积分的说明 11076249
捐赠科研通 3225853
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839