材料科学
复合材料
环氧树脂
极限抗拉强度
硅烷
热稳定性
胶粘剂
热膨胀
动态力学分析
聚合物
化学工程
工程类
图层(电子)
作者
Kyung-Soo Sung,Namil Kim
出处
期刊:Polymers
[MDPI AG]
日期:2023-05-25
卷期号:15 (11): 2452-2452
标识
DOI:10.3390/polym15112452
摘要
Epoxy resin was mixed with benzoxazine resin and an aluminum trihydrate (ATH) additive to provide flame retardancy and good mechanical properties. The ATH was modified using three different silane coupling agents and then incorporated into a 60/40 epoxy/benzoxazine mixture. The effect of blending compositions and surface modification on the flame-retardant and mechanical properties of the composites was investigated by performing UL94, tensile, and single-lap shear tests. Additional measurements were conducted including thermal stability, storage modulus, and coefficient of thermal expansion (CTE) assessments. The mixtures containing more than 40 wt% benzoxazine revealed a UL94 V-1 rating with high thermal stability and low CTE. Mechanical properties including storage modulus, and tensile and shear strength, also increased in proportion to the benzoxazine content. Upon the addition of ATH to the 60/40 epoxy/benzoxazine mixture, a V-0 rating was achieved at 20 wt% ATH. The pure epoxy passed a V-0 rating by the addition of 50 wt% ATH. The lower mechanical properties at high ATH loading could have been improved by introducing a silane coupling agent to the ATH surface. The composites containing surface-modified ATH with epoxy silane revealed about three times higher tensile strength and one and a half times higher shear strength compared to the untreated ATH. The enhanced compatibility between the surface-modified ATH and the resin was confirmed by observing the fracture surface of the composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI