化学
壳聚糖
体内
右旋糖酐
生物相容性
自愈水凝胶
体外
结肠炎
溃疡性结肠炎
生物化学
免疫学
病理
有机化学
医学
生物技术
疾病
生物
作者
Mengting Xiong,Yuanyuan Li,Haonan He,Suqi Hao,Pengchao Fang,Mao Xu,Yan Chen,Yujun Chen,Shihui Yu,Haiyan Hu
标识
DOI:10.1016/j.ejpb.2023.06.010
摘要
An oral galactosylated carboxymethyl chitosan polymeric nanomicelles (Gal-N-CMCS NPs) embedded in chitosan-alginate hydrogel (CA-Gel) was developed to load cyclosporine A (CyA) as therapeutic agents against ulcerative colitis (UC). Galactose modified CMCS with macrophage targeting characteristic and CyA via a simple ultrasonication method to form Gal-N-CMCS/CyA NPs, and mixed CA-Gel to acquire the final formulation (Gal-N-CMCS/CyA Gel). The generated Gal-N-CMCS/CyA NPs displayed a desirable particle size (206.8 nm), negative surface charge (-19.5 mV), and high encapsulating efficiency (89.6 %). The morphology and release profiles were also charactered by transmission electron microscope [1] and dialysis method, respectively. Strikingly, the mucus penetration of Gal-N-CMCS/CyA NPs exceeded 90 % within 90 min. The Gal-N-CMCS NPs internalized by macrophages were 3.3-fold higher than CMCS-N NPs, thereby, enhancing the anti-inflammatory activities of NPs. Meanwhile, these NPs exhibited excellent biocompatibility, reduced the toxic effect of CyA, and targeting ability on inflammatory macrophages both in vitro and in vivo. Most importantly, in vivo studies revealed that CyA NPs could efficiently target the inflamed colon, remarkably alleviate inflammation, repair mucosal and reconstructed colonic epithelial barriers in UC mice induced by dextran sulfate sodium (DSS) via Toll-like receptor 4 -Nuclear factor kappa-B (TLR4-NF-κB) pathway. Our findings suggest that these high-performance and facilely fabricated Gal-N-CMCS/CyA NPs could be developed as a promising drug carrier for oral UC treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI