Sequential self-propelled morphology transitions of nanoscale condensates enable a cascade jumping-droplet condensation

聚结(物理) 材料科学 成核 跳跃的 纳米技术 纳米柱 化学物理 纳米结构 去湿 表面能 微流控 润湿 下降(电信) 冷凝 薄膜 复合材料 化学 物理 热力学 机械工程 工程类 天体生物学 生物 生理学
作者
Shan Gao,Jian Qu,Zhichun Liu,Weigang Ma
出处
期刊:Nano Energy [Elsevier]
卷期号:113: 108558-108558 被引量:19
标识
DOI:10.1016/j.nanoen.2023.108558
摘要

The jumping-droplet condensation, namely the out-of-plane jumping of condensed droplets upon coalescence, has been a promising technical innovation in the fields of energy harvesting, droplet manipulation, thermal management, etc., yet is limited owing to the challenge of enabling a sustainable and programmable control. Here, we characterized the morphological evolutions and dynamic behaviors of nanoscale condensates on different nanopillar surfaces, and found that there exists an unrevealed domino effect throughout the entire droplet lifecycle and the coalescence is not the only mechanism to access the droplet jumping. The vapor nucleation preferentially occurs in structure intervals, thus the formed liquid embryos incubate and grow in a spatially confined mode, which stores an excess surface energy and simultaneously provides a asymmetric Laplace pressure, stimulating the trapped droplets to undergo a dewetting transition or even a self-jumping, which can be facilitated by the tall and dense nanostructures. Subsequently, the adjacent droplets merge mutually and further trigger more multifarious self-propelled behaviors that are affected by underlying surface nanostructure, including dewetting transition, coalescence-induced jumping and jumping relay. Moreover, an improved energy-based model was developed by considering the nano-physical effects, the theoretical prediction not only extends the coalescence-induced jumping to the nanometer-sized droplets but also correlates the surface nanostructure topology to the jumping velocity. Such a cumulative effect of nucleation-growth-coalescence on the ultimate morphology of droplet may offer a new strategy for designing functional nanostructured surfaces that serve to orientationally manipulate, transport and collect droplets, and motivate surface engineers to achieve the performance ceiling of the jumping-droplet condensation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助呐呐呐呐呐呐采纳,获得10
1秒前
别太可爱发布了新的文献求助10
2秒前
CodeCraft应助Eclipseee采纳,获得10
2秒前
2秒前
2秒前
junyue完成签到,获得积分10
3秒前
大模型应助李哈哈采纳,获得10
4秒前
wanci应助chen采纳,获得10
4秒前
5秒前
iiomee完成签到 ,获得积分10
6秒前
Hello应助积极的硬币采纳,获得10
7秒前
8秒前
8秒前
悦耳晓露应助junyue采纳,获得10
9秒前
杨露露完成签到 ,获得积分20
9秒前
啦啦啦发布了新的文献求助10
9秒前
房LY完成签到,获得积分10
9秒前
10秒前
orixero应助BioJ采纳,获得10
10秒前
10秒前
科研小白发布了新的文献求助10
11秒前
好的完成签到,获得积分10
11秒前
别太可爱完成签到,获得积分10
11秒前
旷野天发布了新的文献求助10
12秒前
害羞听芹完成签到,获得积分10
13秒前
windcreator完成签到,获得积分10
13秒前
西原的橙果完成签到,获得积分10
14秒前
15秒前
orixero应助ccc采纳,获得30
15秒前
Jiaowen完成签到,获得积分10
16秒前
lunar发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI2S应助fagfagsf采纳,获得10
17秒前
17秒前
ZX完成签到 ,获得积分10
18秒前
旷野天完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304512
求助须知:如何正确求助?哪些是违规求助? 2938474
关于积分的说明 8488910
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427046
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647436