Sequential self-propelled morphology transitions of nanoscale condensates enable a cascade jumping-droplet condensation

聚结(物理) 材料科学 成核 跳跃的 纳米技术 纳米柱 化学物理 纳米结构 去湿 表面能 微流控 润湿 下降(电信) 冷凝 薄膜 复合材料 化学 物理 热力学 机械工程 工程类 天体生物学 生物 生理学
作者
Shan Gao,Jian Qu,Zhichun Liu,Weigang Ma
出处
期刊:Nano Energy [Elsevier]
卷期号:113: 108558-108558 被引量:21
标识
DOI:10.1016/j.nanoen.2023.108558
摘要

The jumping-droplet condensation, namely the out-of-plane jumping of condensed droplets upon coalescence, has been a promising technical innovation in the fields of energy harvesting, droplet manipulation, thermal management, etc., yet is limited owing to the challenge of enabling a sustainable and programmable control. Here, we characterized the morphological evolutions and dynamic behaviors of nanoscale condensates on different nanopillar surfaces, and found that there exists an unrevealed domino effect throughout the entire droplet lifecycle and the coalescence is not the only mechanism to access the droplet jumping. The vapor nucleation preferentially occurs in structure intervals, thus the formed liquid embryos incubate and grow in a spatially confined mode, which stores an excess surface energy and simultaneously provides a asymmetric Laplace pressure, stimulating the trapped droplets to undergo a dewetting transition or even a self-jumping, which can be facilitated by the tall and dense nanostructures. Subsequently, the adjacent droplets merge mutually and further trigger more multifarious self-propelled behaviors that are affected by underlying surface nanostructure, including dewetting transition, coalescence-induced jumping and jumping relay. Moreover, an improved energy-based model was developed by considering the nano-physical effects, the theoretical prediction not only extends the coalescence-induced jumping to the nanometer-sized droplets but also correlates the surface nanostructure topology to the jumping velocity. Such a cumulative effect of nucleation-growth-coalescence on the ultimate morphology of droplet may offer a new strategy for designing functional nanostructured surfaces that serve to orientationally manipulate, transport and collect droplets, and motivate surface engineers to achieve the performance ceiling of the jumping-droplet condensation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Natasha发布了新的文献求助10
1秒前
Tina完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
汉堡包应助超级的平萱采纳,获得10
3秒前
5秒前
wx2360ouc完成签到 ,获得积分10
5秒前
Ferry发布了新的文献求助10
6秒前
清脆糖豆发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
吴旭发布了新的文献求助10
9秒前
火山完成签到,获得积分10
9秒前
史超发布了新的文献求助10
9秒前
非凡梦完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6应助诗歌节公社采纳,获得10
12秒前
wangye发布了新的文献求助10
12秒前
12秒前
wanci应助不知道采纳,获得10
12秒前
马老师发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
yunshan发布了新的文献求助10
15秒前
打打应助肆_采纳,获得10
16秒前
温婉的怀寒完成签到,获得积分20
16秒前
烟花应助三次方采纳,获得10
18秒前
choaiho关注了科研通微信公众号
19秒前
20秒前
20秒前
21秒前
21秒前
不知道完成签到,获得积分20
21秒前
Orange应助霸气映之采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031