催化作用
双功能
材料科学
磷化物
吸附
阴极
碳纤维
化学工程
制作
复合数
过渡金属
析氧
金属
双功能催化剂
铜
功率密度
纳米技术
无机化学
电极
电化学
化学
复合材料
冶金
有机化学
物理化学
功率(物理)
量子力学
替代医学
病理
工程类
物理
医学
作者
Xiaofan Yang,Fengbo Wang,Zhongxin Jing,Ming Chen,Bin Wang,Lu Wang,Guangmeng Qu,Yueyue Kong,Liqiang Xu
出处
期刊:Small
[Wiley]
日期:2023-05-24
卷期号:19 (38)
被引量:24
标识
DOI:10.1002/smll.202301985
摘要
Benefiting from the admirable energy density (1086 Wh kg-1 ), overwhelming security, and low environmental impact, rechargeable zinc-air batteries (ZABs) are deemed to be attractive candidates for lithium-ion batteries. The exploration of novel oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts is the key to promoting the development of zinc-air batteries. Transitional metal phosphides (TMPs) especially Fe-based TMPs are deemed to be a rational type of catalyst, however, their catalytic performance still needs to be further improved. Considering Fe (heme) and Cu (copper terminal oxidases) are nature's options for ORR catalysis in many forms of life from bacteria to humans. Herein, a general "in situ etch-adsorption-phosphatization" strategy is designed for the fabrication of hollow FeP/Fe2 P/Cu3 P-N, P codoped carbon (FeP/Cu3 P-NPC) catalyst as the cathode of liquid and flexible ZABs. The liquid ZABs manifest a high peak power density of 158.5 mW cm-2 and outstanding long-term cycling performance (≈1100 cycles at 2 mA cm-2 ). Similarly, the flexible ZABs deliver superior cycling stability of 81 h at 2 mA cm-2 without bending and 26 h with different bending angles.
科研通智能强力驱动
Strongly Powered by AbleSci AI