A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

背景(考古学) 计算机科学 口译(哲学) 地质调查 数据科学 人工智能 系统工程 遥感 工程类 地质学 地球物理学 古生物学 程序设计语言
作者
Wei Han,Xiaohan Zhang,Yi Wang,Lizhe Wang,Xiaohui Huang,Jun Li,Sheng Wang,Weitao Chen,Xianju Li,Ruyi Feng,Runyu Fan,Xinyu Zhang,Yuewei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 87-113 被引量:125
标识
DOI:10.1016/j.isprsjprs.2023.05.032
摘要

Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LX77bx完成签到,获得积分10
刚刚
外向的醉易完成签到,获得积分10
1秒前
SharonDu完成签到 ,获得积分10
2秒前
3秒前
yuncong323完成签到,获得积分10
4秒前
huohuo完成签到,获得积分10
6秒前
CB完成签到,获得积分10
7秒前
7秒前
8秒前
儒雅路人完成签到,获得积分10
9秒前
OLDBLOW完成签到,获得积分10
10秒前
10秒前
liupangzi完成签到,获得积分10
10秒前
wang完成签到,获得积分10
10秒前
11秒前
Catherkk发布了新的文献求助10
11秒前
lcdamoy完成签到,获得积分10
12秒前
钱浩然发布了新的文献求助10
12秒前
烊烊发布了新的文献求助10
13秒前
十曰完成签到,获得积分10
18秒前
jjjjchou完成签到,获得积分10
19秒前
虚心的不二完成签到 ,获得积分10
21秒前
xuzj应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
22秒前
思源应助科研通管家采纳,获得10
22秒前
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
fang应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
shiizii应助科研通管家采纳,获得10
22秒前
24秒前
火星上的雨莲完成签到,获得积分10
28秒前
开朗的绮山发布了新的文献求助150
28秒前
平淡远山发布了新的文献求助10
29秒前
热心市民小红花应助Roman采纳,获得10
30秒前
艺术家完成签到 ,获得积分10
31秒前
研友_ngqjz8完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022