A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

背景(考古学) 计算机科学 口译(哲学) 地质调查 数据科学 人工智能 系统工程 遥感 工程类 地质学 地球物理学 古生物学 程序设计语言
作者
Wei Han,Xiaohan Zhang,Yi Wang,Lizhe Wang,Xiaohui Huang,Jun Li,Sheng Wang,Weitao Chen,Xianju Li,Ruyi Feng,Runyu Fan,Xinyu Zhang,Yuewei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 87-113 被引量:125
标识
DOI:10.1016/j.isprsjprs.2023.05.032
摘要

Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你好晚安完成签到,获得积分10
1秒前
sxq发布了新的文献求助10
1秒前
在水一方应助林中源采纳,获得10
2秒前
科研通AI2S应助pharmren采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Orange应助友好的慕卉采纳,获得10
3秒前
3秒前
史迪奇大王完成签到,获得积分10
3秒前
和谐谷蕊发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
mhr完成签到,获得积分10
4秒前
ylyu完成签到,获得积分10
4秒前
充电宝应助李迪采纳,获得10
4秒前
wei发布了新的文献求助10
4秒前
moon完成签到,获得积分10
4秒前
5秒前
LiNa完成签到 ,获得积分10
5秒前
浮浮世世完成签到,获得积分10
5秒前
经友菱发布了新的文献求助10
5秒前
kk发布了新的文献求助10
5秒前
乐进完成签到,获得积分10
5秒前
某某完成签到,获得积分10
6秒前
芃芃野完成签到,获得积分10
6秒前
七n一完成签到,获得积分10
6秒前
Merci完成签到,获得积分10
7秒前
鹤轩应助史迪奇大王采纳,获得10
7秒前
无花果应助积极璎采纳,获得10
7秒前
66666666666666完成签到,获得积分10
7秒前
8秒前
9秒前
浮浮世世发布了新的文献求助10
9秒前
9秒前
靓丽紫真发布了新的文献求助10
10秒前
allensune发布了新的文献求助10
11秒前
大龙哥886应助好好采纳,获得10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670