A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

背景(考古学) 计算机科学 口译(哲学) 地质调查 数据科学 人工智能 系统工程 遥感 工程类 地质学 地球物理学 古生物学 程序设计语言
作者
Wei Han,Xiaohan Zhang,Yi Wang,Lizhe Wang,Xiaohui Huang,Jun Li,Sheng Wang,Weitao Chen,Xianju Li,Ruyi Feng,Runyu Fan,Xinyu Zhang,Yuewei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 87-113 被引量:125
标识
DOI:10.1016/j.isprsjprs.2023.05.032
摘要

Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无情妙菡发布了新的文献求助20
3秒前
科研通AI6.1应助jiang采纳,获得10
3秒前
4秒前
5秒前
6秒前
6秒前
6秒前
8秒前
8秒前
浮生之梦发布了新的文献求助10
8秒前
科研通AI6.1应助wangli采纳,获得10
9秒前
10秒前
小媛发布了新的文献求助10
12秒前
北北发布了新的文献求助10
12秒前
汉堡包应助自觉的芙蓉采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
悄悄的完成签到,获得积分10
15秒前
原来完成签到,获得积分10
15秒前
充电宝应助无心的雅旋采纳,获得10
16秒前
16秒前
赘婿应助小媛采纳,获得10
17秒前
19秒前
song完成签到 ,获得积分10
20秒前
fishhy128发布了新的文献求助80
20秒前
21秒前
和气生财君完成签到 ,获得积分10
24秒前
26秒前
自觉的芙蓉完成签到,获得积分20
26秒前
舒心的小笼包完成签到,获得积分20
27秒前
Haliky完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
攒星星完成签到,获得积分10
28秒前
无心的怜南完成签到,获得积分20
29秒前
30秒前
32秒前
无情妙菡完成签到,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736345
求助须知:如何正确求助?哪些是违规求助? 5365448
关于积分的说明 15332933
捐赠科研通 4880224
什么是DOI,文献DOI怎么找? 2622747
邀请新用户注册赠送积分活动 1571635
关于科研通互助平台的介绍 1528489