A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

背景(考古学) 计算机科学 口译(哲学) 地质调查 数据科学 人工智能 系统工程 遥感 工程类 地质学 地球物理学 古生物学 程序设计语言
作者
Wei Han,Xiaohan Zhang,Yi Wang,Lizhe Wang,Xiaohui Huang,Jun Li,Sheng Wang,Weitao Chen,Xianju Li,Ruyi Feng,Runyu Fan,Xinyu Zhang,Yuewei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 87-113 被引量:125
标识
DOI:10.1016/j.isprsjprs.2023.05.032
摘要

Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijg71完成签到,获得积分10
刚刚
刚刚
天空的天发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Lucas应助Reine采纳,获得10
2秒前
3秒前
3秒前
wanci应助嗷唔一口吃掉采纳,获得10
3秒前
Ccry发布了新的文献求助10
3秒前
威武的铭完成签到,获得积分10
3秒前
EeeYiz发布了新的文献求助10
3秒前
3秒前
4秒前
虚幻中蓝发布了新的文献求助10
4秒前
NexusExplorer应助愉快秀采纳,获得10
4秒前
4秒前
笑相发布了新的文献求助10
5秒前
Potato发布了新的文献求助10
5秒前
LAOA发布了新的文献求助10
5秒前
乐乐应助郝出站采纳,获得10
5秒前
5秒前
刻苦的煎蛋完成签到,获得积分10
5秒前
派大星完成签到,获得积分20
6秒前
情怀应助ccz采纳,获得10
6秒前
6秒前
7秒前
英俊的铭应助洋洋采纳,获得10
7秒前
念烟完成签到,获得积分10
7秒前
孙伟健发布了新的文献求助10
8秒前
QY发布了新的文献求助10
8秒前
奈落发布了新的文献求助10
8秒前
乐乐应助忧虑的孤萍采纳,获得10
8秒前
9秒前
9秒前
阿狸贱贱发布了新的文献求助10
10秒前
10秒前
西西发布了新的文献求助10
10秒前
孙伟健发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661078
求助须知:如何正确求助?哪些是违规求助? 4836965
关于积分的说明 15093547
捐赠科研通 4819770
什么是DOI,文献DOI怎么找? 2579579
邀请新用户注册赠送积分活动 1533880
关于科研通互助平台的介绍 1492628