A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

背景(考古学) 计算机科学 口译(哲学) 地质调查 数据科学 人工智能 系统工程 遥感 工程类 地质学 地球物理学 古生物学 程序设计语言
作者
Wei Han,Xiaohan Zhang,Yi Wang,Lizhe Wang,Xiaohui Huang,Jun Li,Sheng Wang,Weitao Chen,Xianju Li,Ruyi Feng,Runyu Fan,Wei Liu,Yuewei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 87-113 被引量:58
标识
DOI:10.1016/j.isprsjprs.2023.05.032
摘要

Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘忧发布了新的文献求助10
刚刚
单半青发布了新的文献求助10
刚刚
天天快乐应助yoyo采纳,获得10
1秒前
1秒前
Lei完成签到,获得积分10
1秒前
1秒前
傲慢葫芦发布了新的文献求助10
1秒前
咿咿呀呀发布了新的文献求助10
2秒前
3秒前
3秒前
...发布了新的文献求助10
4秒前
4秒前
FashionBoy应助ifanyz采纳,获得10
5秒前
5秒前
zhuzhzuhzuz发布了新的文献求助10
6秒前
明理的雨雪完成签到,获得积分10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得30
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
NexusExplorer应助111采纳,获得10
7秒前
傲慢葫芦完成签到,获得积分20
7秒前
leyna发布了新的文献求助10
8秒前
西岭发布了新的文献求助10
8秒前
单半青完成签到,获得积分10
8秒前
华仔应助mimao2233采纳,获得10
9秒前
传奇3应助温婉的荷花采纳,获得10
9秒前
你曾是少年完成签到,获得积分10
9秒前
zry发布了新的文献求助10
10秒前
11111完成签到,获得积分10
10秒前
高高完成签到,获得积分10
14秒前
xiaofei666应助陆驳采纳,获得30
16秒前
cloud发布了新的文献求助10
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
Trace Fossils 1500
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685