BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning

计算机科学 管道(软件) 人工智能 卷积神经网络 变更检测 深度学习 建筑 语义学(计算机科学) 萃取(化学) 地理 程序设计语言 色谱法 化学 考古
作者
Cheng Liao,Han Hu,Xuekun Yuan,Haifeng Li,Chao Liu,Chunyang Liu,Gui Fu,Yulin Ding,Qing Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 138-152 被引量:9
标识
DOI:10.1016/j.isprsjprs.2023.05.011
摘要

Automatic and periodic recompiling of building databases with up-to-date high-resolution images has become a critical requirement for rapidly developing urban environments. However, the architecture of most existing approaches for change extraction attempts to learn features related to changes but ignores objectives related to buildings. This inevitably leads to the generation of significant pseudo-changes, due to factors such as seasonal changes in images and the inclination of building façades. To alleviate the above-mentioned problems, we developed a contrastive learning approach by validating historical building footprints against single up-to-date remotely sensed images. This contrastive learning strategy allowed us to inject the semantics of buildings into a pipeline for the detection of changes, which is achieved by increasing the distinguishability of features of buildings from those of non-buildings. In addition, to reduce the effects of inconsistencies between historical building polygons and buildings in up-to-date images, we employed a deformable convolutional neural network to learn offsets intuitively. In summary, we formulated a multi-branch building extraction method that identifies newly constructed and removed buildings, respectively. To validate our method, we conducted comparative experiments using the public Wuhan University building change detection dataset and a more practical dataset named SI-BU that we established. Our method achieved F1 scores of 93.99% and 70.74% on the above datasets, respectively. Moreover, when the data of the public dataset were divided in the same manner as in previous related studies, our method achieved an F1 score of 94.63%, which surpasses that of the state-of-the-art method. Code and datasets are available at https://vrlab.org.cn/~hanhu/projects/bcenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
临床医学研究中心完成签到,获得积分10
1秒前
淞淞于我完成签到 ,获得积分10
1秒前
yk完成签到 ,获得积分10
1秒前
燕燕发布了新的文献求助10
2秒前
灵寒完成签到 ,获得积分10
2秒前
orixero应助123采纳,获得10
2秒前
zjzjzhujun发布了新的文献求助10
3秒前
题西林壁完成签到,获得积分10
4秒前
Nnaao完成签到 ,获得积分10
4秒前
4秒前
嘟嘟完成签到,获得积分10
4秒前
木南完成签到,获得积分10
5秒前
5秒前
法侣完成签到,获得积分10
5秒前
感动水杯完成签到 ,获得积分10
6秒前
eternal_dreams完成签到 ,获得积分10
6秒前
搜集达人应助winni采纳,获得30
6秒前
Maglev完成签到,获得积分10
6秒前
你帅你有理完成签到,获得积分10
7秒前
浮游应助Tonald Yang采纳,获得10
7秒前
sos完成签到,获得积分10
7秒前
xiaoqianqian174完成签到,获得积分10
7秒前
Sarah完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
可爱的香菇完成签到 ,获得积分10
8秒前
相忘江湖的小余完成签到,获得积分10
8秒前
科研同路人完成签到,获得积分0
9秒前
灵巧水蓝完成签到 ,获得积分10
10秒前
勤劳尔容完成签到,获得积分20
10秒前
落尘完成签到,获得积分10
10秒前
11秒前
11秒前
橙酒完成签到,获得积分10
11秒前
寒酥完成签到,获得积分10
12秒前
翰飞寰宇完成签到,获得积分10
12秒前
朱子完成签到,获得积分10
13秒前
YCH_mem发布了新的文献求助30
13秒前
山间风完成签到,获得积分10
13秒前
刘春霖完成签到 ,获得积分10
14秒前
daixan89完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883