BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning

计算机科学 管道(软件) 人工智能 卷积神经网络 变更检测 深度学习 建筑 语义学(计算机科学) 萃取(化学) 地理 色谱法 考古 化学 程序设计语言
作者
Cheng Liao,Han Hu,Xuekun Yuan,Haifeng Li,Chao Liu,Chunyang Liu,Gui Fu,Yulin Ding,Qing Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 138-152 被引量:9
标识
DOI:10.1016/j.isprsjprs.2023.05.011
摘要

Automatic and periodic recompiling of building databases with up-to-date high-resolution images has become a critical requirement for rapidly developing urban environments. However, the architecture of most existing approaches for change extraction attempts to learn features related to changes but ignores objectives related to buildings. This inevitably leads to the generation of significant pseudo-changes, due to factors such as seasonal changes in images and the inclination of building façades. To alleviate the above-mentioned problems, we developed a contrastive learning approach by validating historical building footprints against single up-to-date remotely sensed images. This contrastive learning strategy allowed us to inject the semantics of buildings into a pipeline for the detection of changes, which is achieved by increasing the distinguishability of features of buildings from those of non-buildings. In addition, to reduce the effects of inconsistencies between historical building polygons and buildings in up-to-date images, we employed a deformable convolutional neural network to learn offsets intuitively. In summary, we formulated a multi-branch building extraction method that identifies newly constructed and removed buildings, respectively. To validate our method, we conducted comparative experiments using the public Wuhan University building change detection dataset and a more practical dataset named SI-BU that we established. Our method achieved F1 scores of 93.99% and 70.74% on the above datasets, respectively. Moreover, when the data of the public dataset were divided in the same manner as in previous related studies, our method achieved an F1 score of 94.63%, which surpasses that of the state-of-the-art method. Code and datasets are available at https://vrlab.org.cn/~hanhu/projects/bcenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雯思发布了新的文献求助10
刚刚
小蛮样完成签到,获得积分10
1秒前
tg2024完成签到,获得积分10
1秒前
2秒前
2秒前
dicc发布了新的文献求助10
2秒前
玄月发布了新的文献求助10
2秒前
冯冯完成签到,获得积分10
2秒前
3秒前
4秒前
7秒前
7秒前
sxhdxwf发布了新的文献求助30
8秒前
8秒前
勤奋的从梦完成签到,获得积分10
10秒前
11秒前
ukmy完成签到,获得积分10
11秒前
12秒前
lh发布了新的文献求助10
12秒前
公冶笑白完成签到,获得积分10
13秒前
ukmy发布了新的文献求助10
13秒前
14秒前
带志完成签到,获得积分10
15秒前
16秒前
Hello应助wuniuniu采纳,获得10
17秒前
顾众生发布了新的文献求助10
18秒前
鱼蛋发布了新的文献求助10
19秒前
坦率白萱应助liz_采纳,获得10
19秒前
Jasper应助lh采纳,获得10
19秒前
所所应助ergou采纳,获得10
19秒前
Ploaris完成签到 ,获得积分10
19秒前
22秒前
孙燕应助PMoLGGYM2021采纳,获得10
22秒前
玄月发布了新的文献求助10
23秒前
QDU发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
27秒前
hyhyhyhy发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176