BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning

计算机科学 管道(软件) 人工智能 卷积神经网络 变更检测 深度学习 建筑 语义学(计算机科学) 萃取(化学) 地理 程序设计语言 色谱法 化学 考古
作者
Cheng Liao,Han Hu,Xuekun Yuan,Haifeng Li,Chao Liu,Chunyang Liu,Gui Fu,Yulin Ding,Qing Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 138-152 被引量:9
标识
DOI:10.1016/j.isprsjprs.2023.05.011
摘要

Automatic and periodic recompiling of building databases with up-to-date high-resolution images has become a critical requirement for rapidly developing urban environments. However, the architecture of most existing approaches for change extraction attempts to learn features related to changes but ignores objectives related to buildings. This inevitably leads to the generation of significant pseudo-changes, due to factors such as seasonal changes in images and the inclination of building façades. To alleviate the above-mentioned problems, we developed a contrastive learning approach by validating historical building footprints against single up-to-date remotely sensed images. This contrastive learning strategy allowed us to inject the semantics of buildings into a pipeline for the detection of changes, which is achieved by increasing the distinguishability of features of buildings from those of non-buildings. In addition, to reduce the effects of inconsistencies between historical building polygons and buildings in up-to-date images, we employed a deformable convolutional neural network to learn offsets intuitively. In summary, we formulated a multi-branch building extraction method that identifies newly constructed and removed buildings, respectively. To validate our method, we conducted comparative experiments using the public Wuhan University building change detection dataset and a more practical dataset named SI-BU that we established. Our method achieved F1 scores of 93.99% and 70.74% on the above datasets, respectively. Moreover, when the data of the public dataset were divided in the same manner as in previous related studies, our method achieved an F1 score of 94.63%, which surpasses that of the state-of-the-art method. Code and datasets are available at https://vrlab.org.cn/~hanhu/projects/bcenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daiweiwei完成签到,获得积分10
1秒前
激动的乐安完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助10
2秒前
自觉南风发布了新的文献求助10
2秒前
3秒前
dwz完成签到,获得积分20
6秒前
活泼的乐枫完成签到,获得积分10
7秒前
8秒前
NexusExplorer应助立军采纳,获得50
9秒前
啦啦啦完成签到,获得积分10
10秒前
让我乔乔发布了新的文献求助10
12秒前
ygr应助科研通管家采纳,获得50
13秒前
不配.应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
wanci应助犹豫山河采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得50
13秒前
橙子味的邱憨憨完成签到 ,获得积分10
15秒前
lolo发布了新的文献求助10
18秒前
congcong完成签到 ,获得积分10
19秒前
21秒前
yujianjin完成签到,获得积分10
22秒前
jiandan关注了科研通微信公众号
23秒前
25秒前
犹豫山河发布了新的文献求助10
26秒前
清爽的天晴完成签到,获得积分10
26秒前
好了完成签到 ,获得积分20
27秒前
陶醉的翠霜完成签到 ,获得积分10
28秒前
西西完成签到,获得积分10
28秒前
完美世界应助Rainbow采纳,获得10
28秒前
28秒前
meetrain发布了新的文献求助10
28秒前
烟花应助emergency采纳,获得10
28秒前
30秒前
秋秋完成签到,获得积分10
30秒前
31秒前
10711发布了新的文献求助10
33秒前
Lucas应助犹豫山河采纳,获得10
34秒前
坚定的海露完成签到,获得积分10
34秒前
一条咸鱼发布了新的文献求助10
35秒前
beluga发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760