亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning

计算机科学 管道(软件) 人工智能 卷积神经网络 变更检测 深度学习 建筑 语义学(计算机科学) 萃取(化学) 地理 色谱法 考古 化学 程序设计语言
作者
Cheng Liao,Han Hu,Xuekun Yuan,Haifeng Li,Chao Liu,Chunyang Liu,Gui Fu,Yulin Ding,Qing Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 138-152 被引量:9
标识
DOI:10.1016/j.isprsjprs.2023.05.011
摘要

Automatic and periodic recompiling of building databases with up-to-date high-resolution images has become a critical requirement for rapidly developing urban environments. However, the architecture of most existing approaches for change extraction attempts to learn features related to changes but ignores objectives related to buildings. This inevitably leads to the generation of significant pseudo-changes, due to factors such as seasonal changes in images and the inclination of building façades. To alleviate the above-mentioned problems, we developed a contrastive learning approach by validating historical building footprints against single up-to-date remotely sensed images. This contrastive learning strategy allowed us to inject the semantics of buildings into a pipeline for the detection of changes, which is achieved by increasing the distinguishability of features of buildings from those of non-buildings. In addition, to reduce the effects of inconsistencies between historical building polygons and buildings in up-to-date images, we employed a deformable convolutional neural network to learn offsets intuitively. In summary, we formulated a multi-branch building extraction method that identifies newly constructed and removed buildings, respectively. To validate our method, we conducted comparative experiments using the public Wuhan University building change detection dataset and a more practical dataset named SI-BU that we established. Our method achieved F1 scores of 93.99% and 70.74% on the above datasets, respectively. Moreover, when the data of the public dataset were divided in the same manner as in previous related studies, our method achieved an F1 score of 94.63%, which surpasses that of the state-of-the-art method. Code and datasets are available at https://vrlab.org.cn/~hanhu/projects/bcenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
归尘应助科研通管家采纳,获得10
4秒前
唐泽雪穗应助科研通管家采纳,获得10
4秒前
喜悦的小土豆完成签到 ,获得积分10
12秒前
24秒前
48秒前
星火发布了新的文献求助10
54秒前
科研通AI5应助球球采纳,获得10
56秒前
鳄鱼不做饿梦完成签到,获得积分10
1分钟前
共享精神应助哈皮波采纳,获得10
1分钟前
Nidehuogef完成签到,获得积分10
1分钟前
1分钟前
哈皮波发布了新的文献求助10
1分钟前
ccccx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
十点睡觉咩完成签到,获得积分10
1分钟前
科研大咖杨某完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
星火完成签到,获得积分10
2分钟前
ccccx发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
Orange应助hrpppp采纳,获得10
2分钟前
2分钟前
hrpppp发布了新的文献求助10
2分钟前
MchemG完成签到,获得积分0
3分钟前
Ava应助hrpppp采纳,获得30
3分钟前
平淡如天完成签到,获得积分10
3分钟前
3分钟前
广州小肥羊完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077449
求助须知:如何正确求助?哪些是违规求助? 4296510
关于积分的说明 13387106
捐赠科研通 4118965
什么是DOI,文献DOI怎么找? 2255614
邀请新用户注册赠送积分活动 1260024
关于科研通互助平台的介绍 1193332