氢
氢气储存
环境科学
压缩氢
点火系统
核工程
氢燃料
化学
工程类
航空航天工程
有机化学
作者
Qiuju Ma,Yuhao Guo,Mingyu Zhong,HE Ya,Jingfeng You,Jianhua Chen,Zhaokun Zhang
标识
DOI:10.1016/j.ijhydene.2023.05.129
摘要
As the foundation for the growth of the hydrogen energy industry and hydrogen energy automobile, hydrogen fueling stations have emerged as the top priority for industrial development in the context of green transformation. However, the high risk of hydrogen and the increasing hydrogen storage pressure in the station make it easy to cause catastrophic explosion mishaps once hydrogen leaks. Therefore, based on the actual layout of construction and facilities dimensions of the Beijing Yongfeng hydrogen fueling station, we studied the propagation law of the hydrogen explosion shock wave in the station under various conditions and analyzed the structural dynamic response process of surrounding structures under the action of the explosion shock wave. Finally, we visualized and quantitatively evaluated the consequences of a hydrogen explosion in the station by establishing a risk matrix and an accident consequence level matrix. The results show that a hydrogen explosion's consequence severity is influenced by the ambient temperature, ignition source form, and the instantaneous concentration of the hydrogen cloud at the ignition. Following a hydrogen explosion at a high-pressure hydrogen storage tank, the explosion-proof wall failed and collapsed under the shock wave action, but the high-pressure hydrogen storage tank and the hydrogen long tube trailer storage tank did not fail and rupture. Additionally, the probability of hydrogen leakage and explosion accidents at the high-pressure storage tank of the Yongfeng hydrogen fueling station is level 3. The high-risk area of the station for personnel injury accounts for 1/5 of the station area; the medium-risk area accounts for 4/25, and the rest is a low-risk area. Moreover, the high-risk area of the station for construction damage accounts for 1/25 of the station area; the medium-risk area accounts for 4/25, and the rest is a low-risk area.
科研通智能强力驱动
Strongly Powered by AbleSci AI