钝化
光致发光
钙钛矿(结构)
X射线光电子能谱
材料科学
无机化学
量子效率
光电子学
量子产额
开尔文探针力显微镜
卤化物
能量转换效率
分析化学(期刊)
化学工程
化学
光学
纳米技术
结晶学
图层(电子)
工程类
物理
原子力显微镜
荧光
色谱法
作者
Thomas Baumeler,Essa A. Alharbi,George Kakavelakis,George C. Fish,Mubarak T. Aldosari,Miqad S. Albishi,Lukas Pfeifer,Brian Carlsen,Jun‐Ho Yum,Abdullah Alharbi,Mounir Mensi,Jing Gao,Felix T. Eickemeyer,Kevin Sivula,Jacques‐E. Moser,Shaik M. Zakeeruddin,Michaël Grätzel
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-05-04
卷期号:8 (5): 2456-2462
被引量:26
标识
DOI:10.1021/acsenergylett.3c00609
摘要
Metal halide perovskites (MHPs) have shown an incredible increase in efficiency, reaching as high as 25.7%, which now competes with traditional photovoltaic technologies. Herein, we excluded CsX and RbX (X = I–, Br–, Cl–), the most commonly used cations to stabilize α-FAPbI3, from the bulk of perovskite thin films and applied them on the surface as passivation agents. Extensive device optimization led to a power conversion efficiency (PCE) of 24.1% with a high fill factor (FF) of 82.2% upon passivation with CsI. We investigated in depth the effect of CsI passivation on structural and optoelectronic properties using X-ray diffraction (XRD), angle-resolved X-ray photoelectron spectroscopy (ARXPS), Kelvin probe force microscopy (KPFM), time-resolved photoluminescence (TRPL), photoluminescence quantum yield (PLQY), and electroabsorption spectroscopy (TREAS). Furthermore, passivated devices exhibit enhanced operational stability, with optimized passivation with CsI leading to a retention of ∼90% of the initial PCE under 1 sun illumination with maximum power point tracking for 600 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI