亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent Few-shot Object Detection Algorithms: A Survey with Performance Comparison

计算机科学 分类学(生物学) 人工智能 机器学习 领域(数学) 目标检测 任务(项目管理) 透视图(图形) 对象(语法) 学习迁移 模式识别(心理学) 植物 数学 管理 纯数学 经济 生物
作者
Tianying Liu,Lu Zhang,Yang Wang,Jihong Guan,Yanwei Fu,Jiajia Zhao,Shuigeng Zhou
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (4): 1-36 被引量:15
标识
DOI:10.1145/3593588
摘要

The generic object detection (GOD) task has been successfully tackled by recent deep neural networks, trained by an avalanche of annotated training samples from some common classes. However, it is still non-trivial to generalize these object detectors to the novel long-tailed object classes, which have only few labeled training samples. To this end, the Few-Shot Object Detection (FSOD) has been topical recently, as it mimics the humans’ ability of learning to learn and intelligently transfers the learned generic object knowledge from the common heavy-tailed to the novel long-tailed object classes. Especially, the research in this emerging field has been flourishing in recent years with various benchmarks, backbones, and methodologies proposed. To review these FSOD works, there are several insightful FSOD survey articles [ 58 , 59 , 74 , 78 ] that systematically study and compare them as the groups of fine-tuning/transfer learning and meta-learning methods. In contrast, we review the existing FSOD algorithms from a new perspective under a new taxonomy based on their contributions, i.e., data-oriented, model-oriented, and algorithm-oriented. Thus, a comprehensive survey with performance comparison is conducted on recent achievements of FSOD. Furthermore, we also analyze the technical challenges, the merits and demerits of these methods, and envision the future directions of FSOD. Specifically, we give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols. The taxonomy is then proposed that groups FSOD methods into three types. Following this taxonomy, we provide a systematic review of the advances in FSOD. Finally, further discussions on performance, challenges, and future directions are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赫雪枫发布了新的文献求助10
6秒前
Powder完成签到,获得积分10
7秒前
21秒前
陶醉大侠发布了新的文献求助10
27秒前
田柾国发布了新的文献求助10
29秒前
zhou完成签到 ,获得积分10
41秒前
42秒前
46秒前
史小霜发布了新的文献求助10
48秒前
newplayer发布了新的文献求助30
49秒前
53秒前
干净博涛完成签到 ,获得积分10
56秒前
nini完成签到 ,获得积分10
1分钟前
善学以致用应助眰恦采纳,获得10
1分钟前
xiaxia完成签到 ,获得积分10
1分钟前
1分钟前
橙色小瓶子完成签到,获得积分10
1分钟前
1分钟前
白日焰火完成签到 ,获得积分10
2分钟前
2分钟前
XJhahaha发布了新的文献求助10
2分钟前
RefractaireS关注了科研通微信公众号
2分钟前
背后的星星完成签到,获得积分20
2分钟前
2分钟前
眰恦发布了新的文献求助10
2分钟前
隐形曼青应助RefractaireS采纳,获得60
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
nenoaowu应助科研通管家采纳,获得30
2分钟前
2分钟前
所所应助qiu采纳,获得10
2分钟前
momo完成签到,获得积分10
3分钟前
lou1219完成签到,获得积分10
3分钟前
Nakacoke77完成签到,获得积分10
3分钟前
iwaking完成签到,获得积分10
3分钟前
xiaozhao完成签到 ,获得积分10
3分钟前
3分钟前
在阳光下完成签到 ,获得积分10
3分钟前
nenoaowu发布了新的文献求助10
3分钟前
陶醉大侠发布了新的文献求助10
3分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815842
关于积分的说明 7910441
捐赠科研通 2475444
什么是DOI,文献DOI怎么找? 1318150
科研通“疑难数据库(出版商)”最低求助积分说明 632011
版权声明 602282