Machine learning-based immune phenotypes correlate with STK11/KEAP1 co-mutations and prognosis in resectable NSCLC: a sub-study of the TNM-I trial

医学 免疫系统 肿瘤科 危险系数 内科学 腺癌 肺癌 表型 癌症 免疫学 基因 生物 置信区间 生物化学
作者
Mehrdad Rakaee,Sigve Andersen,K. Giannikou,Erna‐Elise Paulsen,Thomas K. Kilvaer,L. T. Busund,Thomas Berg,Elin Richardsen,Ana Paola G. Lombardi,Elio Adib,Mona Irene Pedersen,Masoud Tafavvoghi,Sissel Gyrid Freim Wahl,René Horsleben Petersen,A.L. Bondgaard,C.W. Yde,C. Baudet,Peter B. Licht,Marius Lund‐Iversen,Bjørn Henning Grønberg
出处
期刊:Annals of Oncology [Elsevier]
卷期号:34 (7): 578-588 被引量:8
标识
DOI:10.1016/j.annonc.2023.04.005
摘要

We aim to implement an immune cell score model in routine clinical practice for resected non-small-cell lung cancer (NSCLC) patients (NCT03299478). Molecular and genomic features associated with immune phenotypes in NSCLC have not been explored in detail.We developed a machine learning (ML)-based model to classify tumors into one of three categories: inflamed, altered, and desert, based on the spatial distribution of CD8+ T cells in two prospective (n = 453; TNM-I trial) and retrospective (n = 481) stage I-IIIA NSCLC surgical cohorts. NanoString assays and targeted gene panel sequencing were used to evaluate the association of gene expression and mutations with immune phenotypes.Among the total of 934 patients, 24.4% of tumors were classified as inflamed, 51.3% as altered, and 24.3% as desert. There were significant associations between ML-derived immune phenotypes and adaptive immunity gene expression signatures. We identified a strong association of the nuclear factor-κB pathway and CD8+ T-cell exclusion through a positive enrichment in the desert phenotype. KEAP1 [odds ratio (OR) 0.27, Q = 0.02] and STK11 (OR 0.39, Q = 0.04) were significantly co-mutated in non-inflamed lung adenocarcinoma (LUAD) compared to the inflamed phenotype. In the retrospective cohort, the inflamed phenotype was an independent prognostic factor for prolonged disease-specific survival and time to recurrence (hazard ratio 0.61, P = 0.01 and 0.65, P = 0.02, respectively).ML-based immune phenotyping by spatial distribution of T cells in resected NSCLC is able to identify patients at greater risk of disease recurrence after surgical resection. LUADs with concurrent KEAP1 and STK11 mutations are enriched for altered and desert immune phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助JHL采纳,获得10
刚刚
by完成签到,获得积分10
刚刚
cc完成签到,获得积分10
1秒前
ezekiet完成签到 ,获得积分10
1秒前
1秒前
酷酷问薇完成签到,获得积分20
1秒前
2秒前
耍酷千亦完成签到 ,获得积分10
2秒前
DengJJJ完成签到,获得积分10
2秒前
英姑应助甜蜜阑悦采纳,获得10
2秒前
金锐发布了新的文献求助10
2秒前
老迟到的发带完成签到,获得积分10
3秒前
懒骨头兄应助郭京京采纳,获得10
4秒前
5秒前
南山完成签到,获得积分10
5秒前
勤奋的诗珊完成签到,获得积分10
5秒前
自由飞阳发布了新的文献求助50
6秒前
酸海椒完成签到,获得积分10
7秒前
机智冬瓜发布了新的文献求助10
7秒前
新嘟完成签到,获得积分10
8秒前
10秒前
10秒前
dtcao发布了新的文献求助10
10秒前
茗泠发布了新的文献求助200
11秒前
Qiancheng完成签到,获得积分10
11秒前
香蕉觅云应助汪勇采纳,获得10
11秒前
SciGPT应助michael采纳,获得150
12秒前
12秒前
wuxueyi完成签到,获得积分10
12秒前
Chloe完成签到,获得积分0
13秒前
Left完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
6666应助有酒采纳,获得10
15秒前
虚心飞鸟完成签到,获得积分10
15秒前
Kittymiaoo发布了新的文献求助10
16秒前
JamesPei应助23采纳,获得10
16秒前
JHL发布了新的文献求助10
16秒前
斯文的白玉完成签到,获得积分10
17秒前
汉堡包应助川川采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299