自编码
降维
计算机科学
可视化
人工智能
深度学习
辍学(神经网络)
模式识别(心理学)
机器学习
作者
Jing Jiang,Junlin Xu,Yuansheng Liu,Bosheng Song,Xuhong Guo,Xiangxiang Zeng,Quan Zou
摘要
Single-cell RNA sequencing (scRNA-seq) is a revolutionary breakthrough that determines the precise gene expressions on individual cells and deciphers cell heterogeneity and subpopulations. However, scRNA-seq data are much noisier than traditional high-throughput RNA-seq data because of technical limitations, leading to many scRNA-seq data studies about dimensionality reduction and visualization remaining at the basic data-stacking stage. In this study, we propose an improved variational autoencoder model (termed DREAM) for dimensionality reduction and a visual analysis of scRNA-seq data. Here, DREAM combines the variational autoencoder and Gaussian mixture model for cell type identification, meanwhile explicitly solving 'dropout' events by introducing the zero-inflated layer to obtain the low-dimensional representation that describes the changes in the original scRNA-seq dataset. Benchmarking comparisons across nine scRNA-seq datasets show that DREAM outperforms four state-of-the-art methods on average. Moreover, we prove that DREAM can accurately capture the expression dynamics of human preimplantation embryonic development. DREAM is implemented in Python, freely available via the GitHub website, https://github.com/Crystal-JJ/DREAM.
科研通智能强力驱动
Strongly Powered by AbleSci AI