计算机科学
键控
人工神经网络
神经形态工程学
自由空间光通信
调制(音乐)
算法
传输(电信)
光通信
能量(信号处理)
人工智能
空间光调制器
噪音(视频)
光学
拓扑(电路)
物理
电信
图像(数学)
电气工程
声学
工程类
量子力学
作者
Baoli Li,Qinyu Chen,Hang Su,Ke Cheng,Haitao Luan,Miṅ Gu,Xinyuan Fang
出处
期刊:Journal of Optics
[IOP Publishing]
日期:2023-04-25
卷期号:25 (7): 074001-074001
被引量:3
标识
DOI:10.1088/2040-8986/acd013
摘要
Abstract The theoretical unbounded orbital angular momentum (OAM) states can be exploited as data bits in the OAM shift keying (OAM-SK) free-space optical (FSO) communications. In order to cope with the atmospheric turbulence (AT) and misalignment in practical applications, various machine learning algorithms, or neural networks (NNs), have been put forward to decode the OAM states. However, to recognize the hybrid spatial modes representing a large bit states, the massive learnable nodes, longer computation time and more training parameters are required to improve the capability of the NNs, resulting in energy efficiency burden to the hardware device. In this paper, the event-based spiking neural network (SNN) is utilized to recognize the hybrid spatial modes consisting of superposed coaxial Laguerre–Gaussian modes with l ranging from 0 to 9 and p = 0, which is termed as spiking OAM-recognition neural network (Spiking-ORNN). In comparison to the previous solution of running deep NNs on graphics processing units, the neuromorphic solution of running Spiking-ORNN on neuromorphic chips exhibits 4300× higher energy efficiency without obvious sacrifice of recognition accuracy (less than 0.5%). Moreover, we experimentally demonstrate a 10 m 1024-ary OAM-SK FSO communication for the transmission of an image with a 10 bit grey level, wherein the peak signal-to-noise ratio of the received image can exceed 41.4 dB under the AT of C n 2 =10 −15 m −2/3 . We anticipate that our results can stimulate further researches on the utilization of the brain-like SNN chips to reduce the energy consumptions based on the artificial-intelligence-enhanced optoelectronic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI