Ultralow-power spiking neural networks for 1024-ary orbital angular momentum shift keying free-space optical communication

计算机科学 键控 人工神经网络 神经形态工程学 自由空间光通信 调制(音乐) 算法 传输(电信) 光通信 能量(信号处理) 人工智能 空间光调制器 噪音(视频) 光学 拓扑(电路) 物理 电信 图像(数学) 电气工程 声学 工程类 量子力学
作者
Baoli Li,Qinyu Chen,Hang Su,Ke Cheng,Haitao Luan,Miṅ Gu,Xinyuan Fang
出处
期刊:Journal of Optics [IOP Publishing]
卷期号:25 (7): 074001-074001 被引量:3
标识
DOI:10.1088/2040-8986/acd013
摘要

Abstract The theoretical unbounded orbital angular momentum (OAM) states can be exploited as data bits in the OAM shift keying (OAM-SK) free-space optical (FSO) communications. In order to cope with the atmospheric turbulence (AT) and misalignment in practical applications, various machine learning algorithms, or neural networks (NNs), have been put forward to decode the OAM states. However, to recognize the hybrid spatial modes representing a large bit states, the massive learnable nodes, longer computation time and more training parameters are required to improve the capability of the NNs, resulting in energy efficiency burden to the hardware device. In this paper, the event-based spiking neural network (SNN) is utilized to recognize the hybrid spatial modes consisting of superposed coaxial Laguerre–Gaussian modes with l ranging from 0 to 9 and p = 0, which is termed as spiking OAM-recognition neural network (Spiking-ORNN). In comparison to the previous solution of running deep NNs on graphics processing units, the neuromorphic solution of running Spiking-ORNN on neuromorphic chips exhibits 4300× higher energy efficiency without obvious sacrifice of recognition accuracy (less than 0.5%). Moreover, we experimentally demonstrate a 10 m 1024-ary OAM-SK FSO communication for the transmission of an image with a 10 bit grey level, wherein the peak signal-to-noise ratio of the received image can exceed 41.4 dB under the AT of C n 2 =10 −15 m −2/3 . We anticipate that our results can stimulate further researches on the utilization of the brain-like SNN chips to reduce the energy consumptions based on the artificial-intelligence-enhanced optoelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TheFuture发布了新的文献求助10
1秒前
1秒前
科研通AI6应助虚拟的画板采纳,获得10
3秒前
4秒前
Flex完成签到,获得积分10
5秒前
科研通AI5应助马到成功采纳,获得10
5秒前
sy发布了新的文献求助10
6秒前
6秒前
7秒前
浮游应助朴素的SCI缔造者采纳,获得10
8秒前
8秒前
溟夔蝶魅完成签到,获得积分20
8秒前
科研小白完成签到,获得积分10
8秒前
9秒前
柴子完成签到,获得积分10
10秒前
心木完成签到 ,获得积分10
10秒前
11秒前
共享精神应助serendipity采纳,获得10
11秒前
John完成签到 ,获得积分10
13秒前
TANG完成签到,获得积分10
13秒前
13223456发布了新的文献求助10
13秒前
kdf发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
852应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得50
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
GPTea应助科研通管家采纳,获得150
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
加菲丰丰应助科研通管家采纳,获得30
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045