Ultralow-power spiking neural networks for 1024-ary orbital angular momentum shift keying free-space optical communication

计算机科学 键控 人工神经网络 神经形态工程学 自由空间光通信 调制(音乐) 算法 传输(电信) 光通信 能量(信号处理) 人工智能 空间光调制器 噪音(视频) 光学 拓扑(电路) 物理 电信 图像(数学) 电气工程 声学 工程类 量子力学
作者
Baoli Li,Qinyu Chen,Hang Su,Ke Cheng,Haitao Luan,Miṅ Gu,Xinyuan Fang
出处
期刊:Journal of Optics [IOP Publishing]
卷期号:25 (7): 074001-074001 被引量:3
标识
DOI:10.1088/2040-8986/acd013
摘要

Abstract The theoretical unbounded orbital angular momentum (OAM) states can be exploited as data bits in the OAM shift keying (OAM-SK) free-space optical (FSO) communications. In order to cope with the atmospheric turbulence (AT) and misalignment in practical applications, various machine learning algorithms, or neural networks (NNs), have been put forward to decode the OAM states. However, to recognize the hybrid spatial modes representing a large bit states, the massive learnable nodes, longer computation time and more training parameters are required to improve the capability of the NNs, resulting in energy efficiency burden to the hardware device. In this paper, the event-based spiking neural network (SNN) is utilized to recognize the hybrid spatial modes consisting of superposed coaxial Laguerre–Gaussian modes with l ranging from 0 to 9 and p = 0, which is termed as spiking OAM-recognition neural network (Spiking-ORNN). In comparison to the previous solution of running deep NNs on graphics processing units, the neuromorphic solution of running Spiking-ORNN on neuromorphic chips exhibits 4300× higher energy efficiency without obvious sacrifice of recognition accuracy (less than 0.5%). Moreover, we experimentally demonstrate a 10 m 1024-ary OAM-SK FSO communication for the transmission of an image with a 10 bit grey level, wherein the peak signal-to-noise ratio of the received image can exceed 41.4 dB under the AT of C n 2 =10 −15 m −2/3 . We anticipate that our results can stimulate further researches on the utilization of the brain-like SNN chips to reduce the energy consumptions based on the artificial-intelligence-enhanced optoelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的如风完成签到,获得积分10
1秒前
2秒前
吃猫的鱼完成签到,获得积分10
2秒前
脑洞疼应助润润轩轩采纳,获得10
3秒前
刘文静完成签到,获得积分10
4秒前
Southluuu发布了新的文献求助10
4秒前
chenjyuu发布了新的文献求助10
4秒前
4秒前
粗暴的仙人掌完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
logic发布了新的文献求助10
5秒前
习习应助生动的雨竹采纳,获得10
5秒前
bo完成签到 ,获得积分10
5秒前
迟大猫应助啵乐乐采纳,获得10
6秒前
安雯完成签到 ,获得积分10
6秒前
HuLL完成签到,获得积分10
6秒前
Yolo完成签到 ,获得积分10
6秒前
难过的慕青完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
9秒前
无花果应助sunzhiyu233采纳,获得10
9秒前
韭黄完成签到,获得积分20
9秒前
10秒前
诚c发布了新的文献求助10
10秒前
自然秋柳完成签到 ,获得积分10
10秒前
我是老大应助经法采纳,获得10
10秒前
默默的皮牙子应助经法采纳,获得10
10秒前
orixero应助经法采纳,获得10
10秒前
小马甲应助经法采纳,获得10
10秒前
柚子成精应助经法采纳,获得10
11秒前
小蘑菇应助经法采纳,获得10
11秒前
深情安青应助经法采纳,获得10
11秒前
李爱国应助经法采纳,获得10
11秒前
共享精神应助经法采纳,获得10
11秒前
yyyyyy完成签到 ,获得积分10
11秒前
LL完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759