已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep transfer learning in machinery remaining useful life prediction: A systematic review

计算机科学 学习迁移 人工智能 传输(计算) 并行计算
作者
Gaige Chen,Xianguang Kong,Han Cheng,Yang Shengkang,Xianzhi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8940
摘要

Abstract As a novel paradigm in machine learning, deep transfer learning (DTL) can harness the strengths of deep learning for feature representation, while also capitalizing on the advantages of transfer learning for knowledge transfer. Hence, DTL can effectively enhance the robustness and applicability of the data-driven RUL prediction methods, and has garnered extensive development and research attention in machinery RUL prediction. Although there are numerous systematic review articles published on the topic of the DTL-based approaches, a comprehensive overview of the application of DTL in the RUL prediction for different mechanical equipment has yet to be systematically conducted. Therefore, it is imperative to further review the pertinent literature on DTL-based approaches. This will facilitate researchers in comprehending the latest technological advancements and devising efficient solutions to address the cross-domain RUL prediction challenge. In this review, a brief overview of the theoretical background of DTL and its application in RUL prediction tasks are provided at first. Then, a detailed discussion of the primary DTL methods and their recent advancements in cross-domain RUL prediction is presented. Next, the practical application of the current research is discussed in relation to the research object and its open-source data. More importantly, several challenges and further trend are further presented to conclude this paper in the end. We have reason to hope this work can offer convenience and inspiration to researchers seeking to advance in the field of RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
食堂里的明湖鸭完成签到 ,获得积分10
2秒前
哭泣的赛凤完成签到 ,获得积分10
3秒前
默默函完成签到,获得积分10
5秒前
7秒前
9秒前
以菱完成签到,获得积分10
11秒前
12秒前
希望天下0贩的0应助shi采纳,获得10
13秒前
14秒前
小曾发布了新的文献求助10
14秒前
15秒前
15秒前
Lovely_pan完成签到,获得积分20
18秒前
hxldsb关注了科研通微信公众号
19秒前
19秒前
20秒前
coolru完成签到,获得积分10
21秒前
22秒前
隐形铃铛发布了新的文献求助10
23秒前
23秒前
25秒前
整齐凌萱发布了新的文献求助10
25秒前
酷波er应助科研通管家采纳,获得20
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
景辣条应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
景辣条应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得30
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
Astronaut_cat发布了新的文献求助10
27秒前
29秒前
wanci应助liweiDr采纳,获得10
29秒前
30秒前
至乐无乐发布了新的文献求助10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139294
求助须知:如何正确求助?哪些是违规求助? 2790157
关于积分的说明 7794200
捐赠科研通 2446581
什么是DOI,文献DOI怎么找? 1301284
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109