已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of cancer‐associated cachexia in lung cancer patients using whole‐body [18F]FDG‐PET/CT imaging: A multi‐centre study

医学 正电子发射断层摄影术 核医学 肺癌 标准摄取值 癌症 全身成像 分级(工程) PET-CT Pet成像 恶病质 放射科 内科学 土木工程 工程类
作者
Daria Ferrara,Elisabetta Abenavoli,Thomas Beyer,Stefan Gruenert,Marcus Hacker,Swen Hesse,Lukas Hofmann,Smilla Pusitz,Michael Rullmann,Osama Sabri,Roberto Sciagrà,Lalith Kumar Shiyam Sundar,Anke Tönjes,Hubert Wirtz,Josef Yu,Armin Frille
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:15 (6): 2375-2386 被引量:3
标识
DOI:10.1002/jcsm.13571
摘要

Abstract Background Cancer‐associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non‐imaging criteria. Given the metabolic underpinnings of CAC and the ability of [ 18 F]fluoro‐2‐deoxy‐D‐glucose (FDG)‐positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole‐body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC. Methods This multi‐centre study included 345 LCP who underwent WB [ 18 F]FDG‐PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into ‘No CAC’ (WLGS‐0/1 at baseline prior treatment and at first follow‐up: N = 158, 51F/107M), ‘Dev CAC’ (WLGS‐0/1 at baseline and WLGS‐3/4 at follow‐up: N = 90, 34F/56M), and ‘CAC’ (WLGS‐3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUV aorta >) and CT‐defined volumes were extracted for abdominal and visceral organs, muscles, and adipose‐tissue using automated image segmentation of baseline [ 18 F]FDG‐PET/CT images. Imaging and non‐imaging parameters from laboratory tests were compared statistically. A machine‐learning (ML) model was then trained to classify LCP as ‘No CAC’, ‘Dev CAC’, and ‘CAC’ based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient. Results The three CAC categories displayed multi‐organ differences in <SUV aorta >. In all target organs, <SUV aorta > was higher in the ‘CAC’ cohort compared with ‘No CAC’ ( P < 0.01), except for liver and kidneys, where <SUV aorta > in ‘CAC’ was reduced by 5%. The ‘Dev CAC’ cohort displayed a small but significant increase in <SUV aorta > of pancreas (+4%), skeletal‐muscle (+7%), subcutaneous adipose‐tissue (+11%), and visceral adipose‐tissue (+15%). In ‘CAC’ patients, a strong negative Spearman correlation (ρ = −0.8) was identified between <SUV aorta > and volumes of adipose‐tissue. The machine‐learning model identified ‘CAC’ at baseline with 81% of accuracy, highlighting <SUV aorta > of spleen, pancreas, liver, and adipose‐tissue as most relevant features. The model performance was suboptimal (54%) when classifying ‘Dev CAC’ versus ‘No CAC’. Conclusions WB [ 18 F]FDG‐PET/CT imaging reveals groupwise differences in the multi‐organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi‐centre study has been initiated to address the limitations of the present retrospective analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助杨杨杨采纳,获得10
1秒前
小姚姚完成签到,获得积分10
1秒前
Neyou发布了新的文献求助10
1秒前
纪富完成签到 ,获得积分10
4秒前
6秒前
hehe完成签到,获得积分20
7秒前
大鼻子的新四岁完成签到,获得积分10
10秒前
yuan完成签到,获得积分10
10秒前
三千完成签到,获得积分10
12秒前
hehe发布了新的文献求助10
12秒前
酷波er应助kk采纳,获得10
18秒前
搬砖王发布了新的文献求助10
19秒前
20秒前
小葛完成签到,获得积分10
21秒前
de完成签到,获得积分10
22秒前
Heaven完成签到,获得积分10
24秒前
可爱的函函应助三千采纳,获得10
26秒前
28秒前
Criminology34应助悦耳的易梦采纳,获得10
31秒前
kk发布了新的文献求助10
33秒前
害羞的天真完成签到 ,获得积分10
42秒前
eing关注了科研通微信公众号
42秒前
qifei完成签到 ,获得积分10
43秒前
RE完成签到 ,获得积分10
44秒前
高高妙梦完成签到 ,获得积分10
48秒前
kk完成签到,获得积分10
48秒前
Ashan完成签到 ,获得积分10
54秒前
light完成签到,获得积分10
56秒前
古今奇观完成签到 ,获得积分10
56秒前
57秒前
风趣的梦露完成签到 ,获得积分10
58秒前
小小鱼完成签到 ,获得积分10
58秒前
1分钟前
light发布了新的文献求助10
1分钟前
1分钟前
十三发布了新的文献求助10
1分钟前
小易发布了新的文献求助10
1分钟前
甜甜的以筠完成签到 ,获得积分10
1分钟前
1分钟前
灵梦柠檬酸完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049