Detection of cancer‐associated cachexia in lung cancer patients using whole‐body [18F]FDG‐PET/CT imaging: A multi‐centre study

医学 正电子发射断层摄影术 核医学 肺癌 标准摄取值 癌症 全身成像 分级(工程) PET-CT Pet成像 恶病质 放射科 内科学 土木工程 工程类
作者
Daria Ferrara,Elisabetta Abenavoli,Thomas Beyer,Stefan Gruenert,Marcus Hacker,Swen Hesse,Lukas Hofmann,Smilla Pusitz,Michael Rullmann,Osama Sabri,Roberto Sciagrà,Lalith Kumar Shiyam Sundar,Anke Tönjes,Hubert Wirtz,Josef Yu,Armin Frille
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Springer Science+Business Media]
卷期号:15 (6): 2375-2386 被引量:3
标识
DOI:10.1002/jcsm.13571
摘要

Abstract Background Cancer‐associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non‐imaging criteria. Given the metabolic underpinnings of CAC and the ability of [ 18 F]fluoro‐2‐deoxy‐D‐glucose (FDG)‐positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole‐body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC. Methods This multi‐centre study included 345 LCP who underwent WB [ 18 F]FDG‐PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into ‘No CAC’ (WLGS‐0/1 at baseline prior treatment and at first follow‐up: N = 158, 51F/107M), ‘Dev CAC’ (WLGS‐0/1 at baseline and WLGS‐3/4 at follow‐up: N = 90, 34F/56M), and ‘CAC’ (WLGS‐3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUV aorta >) and CT‐defined volumes were extracted for abdominal and visceral organs, muscles, and adipose‐tissue using automated image segmentation of baseline [ 18 F]FDG‐PET/CT images. Imaging and non‐imaging parameters from laboratory tests were compared statistically. A machine‐learning (ML) model was then trained to classify LCP as ‘No CAC’, ‘Dev CAC’, and ‘CAC’ based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient. Results The three CAC categories displayed multi‐organ differences in <SUV aorta >. In all target organs, <SUV aorta > was higher in the ‘CAC’ cohort compared with ‘No CAC’ ( P < 0.01), except for liver and kidneys, where <SUV aorta > in ‘CAC’ was reduced by 5%. The ‘Dev CAC’ cohort displayed a small but significant increase in <SUV aorta > of pancreas (+4%), skeletal‐muscle (+7%), subcutaneous adipose‐tissue (+11%), and visceral adipose‐tissue (+15%). In ‘CAC’ patients, a strong negative Spearman correlation (ρ = −0.8) was identified between <SUV aorta > and volumes of adipose‐tissue. The machine‐learning model identified ‘CAC’ at baseline with 81% of accuracy, highlighting <SUV aorta > of spleen, pancreas, liver, and adipose‐tissue as most relevant features. The model performance was suboptimal (54%) when classifying ‘Dev CAC’ versus ‘No CAC’. Conclusions WB [ 18 F]FDG‐PET/CT imaging reveals groupwise differences in the multi‐organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi‐centre study has been initiated to address the limitations of the present retrospective analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷的指甲油完成签到,获得积分10
刚刚
zyw完成签到 ,获得积分10
1秒前
完美的水杯完成签到 ,获得积分10
1秒前
搞怪的白云完成签到 ,获得积分10
2秒前
3秒前
Owen应助翁sir采纳,获得10
5秒前
6秒前
小张吃不胖完成签到 ,获得积分10
6秒前
夏熠完成签到,获得积分10
8秒前
8秒前
8秒前
孙非完成签到,获得积分10
9秒前
迷你的雁枫完成签到 ,获得积分10
9秒前
向北游发布了新的文献求助10
10秒前
勤奋的凌翠完成签到 ,获得积分10
11秒前
zhangguo完成签到 ,获得积分10
11秒前
莫之白完成签到,获得积分10
13秒前
1b完成签到,获得积分10
13秒前
郑珩发布了新的文献求助10
13秒前
清秀龙猫完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
小文子完成签到,获得积分10
16秒前
K珑完成签到,获得积分10
17秒前
fwb完成签到,获得积分10
18秒前
淡定访琴完成签到,获得积分10
18秒前
Fazie完成签到 ,获得积分10
21秒前
1r完成签到,获得积分10
23秒前
24秒前
25秒前
hyxxx完成签到,获得积分10
28秒前
肥仔发布了新的文献求助20
28秒前
asdfgjjul完成签到,获得积分10
28秒前
犹豫如蓉完成签到 ,获得积分10
30秒前
华姝发布了新的文献求助10
31秒前
zero完成签到,获得积分10
31秒前
吕景宽完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
33秒前
大气白翠完成签到,获得积分10
34秒前
魑魅魍魉999完成签到 ,获得积分10
34秒前
华姝完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044737
求助须知:如何正确求助?哪些是违规求助? 4274288
关于积分的说明 13323576
捐赠科研通 4088026
什么是DOI,文献DOI怎么找? 2236649
邀请新用户注册赠送积分活动 1244065
关于科研通互助平台的介绍 1172119