亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of cancer‐associated cachexia in lung cancer patients using whole‐body [18F]FDG‐PET/CT imaging: A multi‐centre study

医学 正电子发射断层摄影术 核医学 肺癌 标准摄取值 癌症 全身成像 分级(工程) PET-CT Pet成像 恶病质 放射科 内科学 土木工程 工程类
作者
Daria Ferrara,Elisabetta Abenavoli,Thomas Beyer,Stefan Gruenert,Marcus Hacker,Swen Hesse,Lukas Hofmann,Smilla Pusitz,Michael Rullmann,Osama Sabri,Roberto Sciagrà,Lalith Kumar Shiyam Sundar,Anke Tönjes,Hubert Wirtz,Josef Yu,Armin Frille
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:15 (6): 2375-2386 被引量:3
标识
DOI:10.1002/jcsm.13571
摘要

Abstract Background Cancer‐associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non‐imaging criteria. Given the metabolic underpinnings of CAC and the ability of [ 18 F]fluoro‐2‐deoxy‐D‐glucose (FDG)‐positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole‐body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC. Methods This multi‐centre study included 345 LCP who underwent WB [ 18 F]FDG‐PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into ‘No CAC’ (WLGS‐0/1 at baseline prior treatment and at first follow‐up: N = 158, 51F/107M), ‘Dev CAC’ (WLGS‐0/1 at baseline and WLGS‐3/4 at follow‐up: N = 90, 34F/56M), and ‘CAC’ (WLGS‐3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUV aorta >) and CT‐defined volumes were extracted for abdominal and visceral organs, muscles, and adipose‐tissue using automated image segmentation of baseline [ 18 F]FDG‐PET/CT images. Imaging and non‐imaging parameters from laboratory tests were compared statistically. A machine‐learning (ML) model was then trained to classify LCP as ‘No CAC’, ‘Dev CAC’, and ‘CAC’ based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient. Results The three CAC categories displayed multi‐organ differences in <SUV aorta >. In all target organs, <SUV aorta > was higher in the ‘CAC’ cohort compared with ‘No CAC’ ( P < 0.01), except for liver and kidneys, where <SUV aorta > in ‘CAC’ was reduced by 5%. The ‘Dev CAC’ cohort displayed a small but significant increase in <SUV aorta > of pancreas (+4%), skeletal‐muscle (+7%), subcutaneous adipose‐tissue (+11%), and visceral adipose‐tissue (+15%). In ‘CAC’ patients, a strong negative Spearman correlation (ρ = −0.8) was identified between <SUV aorta > and volumes of adipose‐tissue. The machine‐learning model identified ‘CAC’ at baseline with 81% of accuracy, highlighting <SUV aorta > of spleen, pancreas, liver, and adipose‐tissue as most relevant features. The model performance was suboptimal (54%) when classifying ‘Dev CAC’ versus ‘No CAC’. Conclusions WB [ 18 F]FDG‐PET/CT imaging reveals groupwise differences in the multi‐organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi‐centre study has been initiated to address the limitations of the present retrospective analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ARESCI完成签到,获得积分20
2秒前
14秒前
李爱国应助ARESCI采纳,获得10
16秒前
34秒前
37秒前
1分钟前
metro发布了新的文献求助10
1分钟前
圆滚滚的大肥猫完成签到,获得积分10
1分钟前
1分钟前
Ccccn完成签到,获得积分10
1分钟前
1分钟前
完美世界应助Hillson采纳,获得10
1分钟前
搜集达人应助PenguinC采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
PenguinC发布了新的文献求助10
2分钟前
2分钟前
3分钟前
秋刀鱼发布了新的文献求助10
3分钟前
酷炫小懒虫完成签到,获得积分0
3分钟前
加菲丰丰完成签到,获得积分0
3分钟前
充电宝应助Hoshino采纳,获得10
3分钟前
Yini应助FIN采纳,获得50
4分钟前
4分钟前
共享精神应助kevin采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Hello应助长小右采纳,获得10
4分钟前
4分钟前
gtgyh发布了新的文献求助10
4分钟前
Yini应助FIN采纳,获得50
4分钟前
Yini应助bruna采纳,获得100
4分钟前
5分钟前
潮鸣完成签到 ,获得积分10
5分钟前
亚吉完成签到 ,获得积分10
5分钟前
刘慧鑫完成签到,获得积分10
5分钟前
刘慧鑫发布了新的文献求助10
5分钟前
5分钟前
深情安青应助刘慧鑫采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554913
求助须知:如何正确求助?哪些是违规求助? 4639496
关于积分的说明 14656244
捐赠科研通 4581411
什么是DOI,文献DOI怎么找? 2512745
邀请新用户注册赠送积分活动 1487485
关于科研通互助平台的介绍 1458439