亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of cancer‐associated cachexia in lung cancer patients using whole‐body [18F]FDG‐PET/CT imaging: A multi‐centre study

医学 正电子发射断层摄影术 核医学 肺癌 标准摄取值 癌症 全身成像 分级(工程) PET-CT Pet成像 恶病质 放射科 内科学 土木工程 工程类
作者
Daria Ferrara,Elisabetta Abenavoli,Thomas Beyer,Stefan Gruenert,Marcus Hacker,Swen Hesse,Lukas Hofmann,Smilla Pusitz,Michael Rullmann,Osama Sabri,Roberto Sciagrà,Lalith Kumar Shiyam Sundar,Anke Tönjes,Hubert Wirtz,Josef Yu,Armin Frille
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:15 (6): 2375-2386 被引量:3
标识
DOI:10.1002/jcsm.13571
摘要

Abstract Background Cancer‐associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non‐imaging criteria. Given the metabolic underpinnings of CAC and the ability of [ 18 F]fluoro‐2‐deoxy‐D‐glucose (FDG)‐positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole‐body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC. Methods This multi‐centre study included 345 LCP who underwent WB [ 18 F]FDG‐PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into ‘No CAC’ (WLGS‐0/1 at baseline prior treatment and at first follow‐up: N = 158, 51F/107M), ‘Dev CAC’ (WLGS‐0/1 at baseline and WLGS‐3/4 at follow‐up: N = 90, 34F/56M), and ‘CAC’ (WLGS‐3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUV aorta >) and CT‐defined volumes were extracted for abdominal and visceral organs, muscles, and adipose‐tissue using automated image segmentation of baseline [ 18 F]FDG‐PET/CT images. Imaging and non‐imaging parameters from laboratory tests were compared statistically. A machine‐learning (ML) model was then trained to classify LCP as ‘No CAC’, ‘Dev CAC’, and ‘CAC’ based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient. Results The three CAC categories displayed multi‐organ differences in <SUV aorta >. In all target organs, <SUV aorta > was higher in the ‘CAC’ cohort compared with ‘No CAC’ ( P < 0.01), except for liver and kidneys, where <SUV aorta > in ‘CAC’ was reduced by 5%. The ‘Dev CAC’ cohort displayed a small but significant increase in <SUV aorta > of pancreas (+4%), skeletal‐muscle (+7%), subcutaneous adipose‐tissue (+11%), and visceral adipose‐tissue (+15%). In ‘CAC’ patients, a strong negative Spearman correlation (ρ = −0.8) was identified between <SUV aorta > and volumes of adipose‐tissue. The machine‐learning model identified ‘CAC’ at baseline with 81% of accuracy, highlighting <SUV aorta > of spleen, pancreas, liver, and adipose‐tissue as most relevant features. The model performance was suboptimal (54%) when classifying ‘Dev CAC’ versus ‘No CAC’. Conclusions WB [ 18 F]FDG‐PET/CT imaging reveals groupwise differences in the multi‐organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi‐centre study has been initiated to address the limitations of the present retrospective analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似水流年完成签到 ,获得积分10
12秒前
24秒前
量子星尘发布了新的文献求助10
30秒前
清爽冬莲完成签到 ,获得积分0
42秒前
44秒前
dmmmm0903完成签到,获得积分10
59秒前
乐观生活完成签到,获得积分10
1分钟前
1分钟前
as完成签到,获得积分10
1分钟前
Ava应助柏风华采纳,获得10
1分钟前
乐观生活发布了新的文献求助10
1分钟前
duan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Akim应助盛夏如花采纳,获得30
1分钟前
执着亿先发布了新的文献求助10
1分钟前
李佳怡发布了新的文献求助10
1分钟前
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
可爱邓邓完成签到 ,获得积分10
1分钟前
又声完成签到,获得积分10
1分钟前
whoknowsname完成签到,获得积分10
1分钟前
1分钟前
好看的花花鱼完成签到 ,获得积分10
1分钟前
1分钟前
咔咔完成签到,获得积分10
2分钟前
柏风华发布了新的文献求助10
2分钟前
尾状叶完成签到 ,获得积分10
2分钟前
HD发布了新的文献求助10
2分钟前
柏风华完成签到,获得积分10
2分钟前
2分钟前
h0jian09完成签到,获得积分10
2分钟前
Re完成签到 ,获得积分10
2分钟前
2分钟前
粽子完成签到,获得积分10
2分钟前
盛夏如花发布了新的文献求助30
2分钟前
EternalStrider完成签到,获得积分10
2分钟前
颢懿完成签到 ,获得积分10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657891
求助须知:如何正确求助?哪些是违规求助? 4813480
关于积分的说明 15080529
捐赠科研通 4816091
什么是DOI,文献DOI怎么找? 2577100
邀请新用户注册赠送积分活动 1532119
关于科研通互助平台的介绍 1490669