信使核糖核酸
化学
赋形剂
色谱法
剂型
聚合物
化学工程
有机化学
生物化学
基因
工程类
作者
Koki Ogawa,Otowa Aikawa,Tatsuaki Tagami,Takaaki Ito,Kohei Tahara,Shigeru Kawakami,Tetsuya Ozeki
标识
DOI:10.1016/j.ijpharm.2024.124632
摘要
A powder formulation for mucosal administration of mRNA-encapsulated lipid nanoparticles (mRNA-LNPs) is expected to be useful for respiratory diseases. Although freeze-drying is widely used to obtain solid formulations of mRNA-LNPs, highly hydrosoluble cryoprotectants, such as sucrose are necessary. However, sucrose is not a suitable excipient for inhalation powders because of its hygroscopic and deliquescence properties. Spray freeze-drying (SFD) is a method to produce inhalable powder formulation. In this study, we prepared inhalable powder formulations of mRNA-LNPs without deliquescence excipients using pH-modified SFD, which strengthens the interaction between mRNA and ionizable lipids of LNPs by acidic pH modifier, leading to retention of the encapsulated structure of mRNA-LNPs even after SFD. Powdered mRNA-LNPs were suitable for inhalation, and mRNA was encapsulated in LNPs after SFD. The mRNA encapsulation efficiency and mRNA transfection efficiency of pH-modified SFD-mediated powdered mRNA-LNPs were higher than those of conventional SFD, although they were significantly lower than those of liquid intact mRNA-LNPs. However, after long-term storage, the powdered formulation of the mRNA-LNPs exhibited higher mRNA transfection efficiency than liquid mRNA-LNP. Powdered mRNA-LNPs also exerted their function in air-liquid interface cultivation and in vivo intratracheal administration. Collectively, the powder formulation of mRNA-LNPs especially prepared by SFD is expected to be applied for dry powder inhalers.
科研通智能强力驱动
Strongly Powered by AbleSci AI