生成语法
约束(计算机辅助设计)
生成模型
计算机科学
人工智能
工程类
机械工程
作者
Ryotaro Okabe,Mouyang Cheng,Abhijatmedhi Chotrattanapituk,Hung Tuan Nguyen,Xiang Fu,Bowen Han,Yao Wang,Weiwei Xie,Robert J. Cava,Tommi Jaakkola,Yongqiang Cheng,Mingda Li
出处
期刊:Cornell University - arXiv
日期:2024-07-05
标识
DOI:10.48550/arxiv.2407.04557
摘要
Billions of organic molecules are known, but only a tiny fraction of the functional inorganic materials have been discovered, a particularly relevant problem to the community searching for new quantum materials. Recent advancements in machine-learning-based generative models, particularly diffusion models, show great promise for generating new, stable materials. However, integrating geometric patterns into materials generation remains a challenge. Here, we introduce Structural Constraint Integration in the GENerative model (SCIGEN). Our approach can modify any trained generative diffusion model by strategic masking of the denoised structure with a diffused constrained structure prior to each diffusion step to steer the generation toward constrained outputs. Furthermore, we mathematically prove that SCIGEN effectively performs conditional sampling from the original distribution, which is crucial for generating stable constrained materials. We generate eight million compounds using Archimedean lattices as prototype constraints, with over 10% surviving a multi-staged stability pre-screening. High-throughput density functional theory (DFT) on 26,000 survived compounds shows that over 50% passed structural optimization at the DFT level. Since the properties of quantum materials are closely related to geometric patterns, our results indicate that SCIGEN provides a general framework for generating quantum materials candidates.
科研通智能强力驱动
Strongly Powered by AbleSci AI