Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates

生成语法 约束(计算机辅助设计) 生成模型 计算机科学 人工智能 工程类 机械工程
作者
Ryotaro Okabe,Mouyang Cheng,Abhijatmedhi Chotrattanapituk,Hung Tuan Nguyen,Xiang Fu,Bowen Han,Yao Wang,Weiwei Xie,Robert J. Cava,Tommi Jaakkola,Yongqiang Cheng,Mingda Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.04557
摘要

Billions of organic molecules are known, but only a tiny fraction of the functional inorganic materials have been discovered, a particularly relevant problem to the community searching for new quantum materials. Recent advancements in machine-learning-based generative models, particularly diffusion models, show great promise for generating new, stable materials. However, integrating geometric patterns into materials generation remains a challenge. Here, we introduce Structural Constraint Integration in the GENerative model (SCIGEN). Our approach can modify any trained generative diffusion model by strategic masking of the denoised structure with a diffused constrained structure prior to each diffusion step to steer the generation toward constrained outputs. Furthermore, we mathematically prove that SCIGEN effectively performs conditional sampling from the original distribution, which is crucial for generating stable constrained materials. We generate eight million compounds using Archimedean lattices as prototype constraints, with over 10% surviving a multi-staged stability pre-screening. High-throughput density functional theory (DFT) on 26,000 survived compounds shows that over 50% passed structural optimization at the DFT level. Since the properties of quantum materials are closely related to geometric patterns, our results indicate that SCIGEN provides a general framework for generating quantum materials candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无私幻枫发布了新的文献求助10
2秒前
lalalala发布了新的文献求助10
2秒前
3秒前
丘比特应助32采纳,获得10
4秒前
5秒前
6秒前
6秒前
南风完成签到,获得积分10
7秒前
YangMengJing_发布了新的文献求助10
8秒前
wan发布了新的文献求助10
9秒前
我是老大应助Cynthia采纳,获得10
9秒前
Nacy发布了新的文献求助10
9秒前
英俊的铭应助Rian采纳,获得10
10秒前
11秒前
桂鱼饭完成签到 ,获得积分10
13秒前
Owen应助lalalala采纳,获得10
13秒前
金刚经应助lalalala采纳,获得10
13秒前
14秒前
14秒前
themanell发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
852应助YangMengJing_采纳,获得10
18秒前
小马甲应助翠翠采纳,获得10
19秒前
19秒前
daiyu发布了新的文献求助10
20秒前
FU发布了新的文献求助10
20秒前
Lucas应助124332采纳,获得10
21秒前
科研通AI2S应助124332采纳,获得10
21秒前
Eig发布了新的文献求助10
21秒前
Cynthia发布了新的文献求助10
21秒前
themanell完成签到,获得积分10
22秒前
22秒前
漾漾发布了新的文献求助10
23秒前
Ava应助Nacy采纳,获得10
24秒前
风趣青槐发布了新的文献求助30
24秒前
26秒前
Rian发布了新的文献求助10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265155
求助须知:如何正确求助?哪些是违规求助? 2905120
关于积分的说明 8332765
捐赠科研通 2575538
什么是DOI,文献DOI怎么找? 1399868
科研通“疑难数据库(出版商)”最低求助积分说明 654595
邀请新用户注册赠送积分活动 633449