Integrated Analysis of Serum and Tissue microRNA Transcriptome for Biomarker Discovery in Gastric Cancer

小RNA 生物 计算生物学 转录组 癌症 基因表达 生物标志物 基因共表达网络 基因调控网络 基因 生物信息学 遗传学 基因本体论
作者
X Wang,Zhuoran Li,Chengyan Zhang
出处
期刊:Environmental Toxicology [Wiley]
标识
DOI:10.1002/tox.24430
摘要

ABSTRACT Gastric cancer (GC) poses a significant global health challenge, demanding a detailed exploration of its molecular landscape. Studies suggest that exposure to environmental pollutants can lead to changes in microRNA (miRNA) expression patterns, which may contribute to the development and progression of GC. MiRNAs have emerged as crucial regulators implicated in GC pathogenesis. The largest GC serum miRNA dataset to date, comprising 1417 non‐cancer controls and 1417 GC samples was used. We conducted a comprehensive analysis of miRNA expression profiles. Differential expression analysis, co‐expression network construction, and machine learning models were employed to identify key serum miRNAs and their association with clinical parameters. Weighted Gene Co‐expression Network Analysis (WGCNA) and immune infiltration analysis were used to validate the importance of the key miRNA. A total of 1766 differentially expressed miRNAs were identified, with miR‐1290, miR‐1246, and miR‐451a among the top up‐regulated, and miR‐6875‐5p, miR‐6784‐5p, miR‐1228‐5p, and miR‐6765‐5p among the top down‐regulated. WGCNA revealed that modules M1 and M5 were significantly associated with GC subtypes and disease status. MiRNA‐target gene network analysis identified prognostically significant genes TP53, EMCN, CBX8, and ALDH1A3. Machine learning models LASSO, SVM, randomforest, and XGBOOST demonstrated the diagnostic potential of miRNA profiles. Tissue and serum miR‐187 emerged as an independent prognostic factor, influencing patient survival across clinical parameters. Gene expression and immune cell infiltration were different in tissues stratified by miR‐187 expression. In summary, the integration of differential gene expression, co‐expression analysis, and immune cell profiling provided insights into the molecular intricacies of GC progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
QYW发布了新的文献求助10
2秒前
麻薯头头发布了新的文献求助10
3秒前
cherry完成签到 ,获得积分10
3秒前
科研通AI2S应助wxyllxx采纳,获得10
3秒前
路过完成签到,获得积分10
6秒前
xinlixi完成签到,获得积分10
7秒前
8秒前
8秒前
lee1984612完成签到,获得积分10
10秒前
15秒前
白的狗与黑的猫完成签到,获得积分10
15秒前
今后应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
xxxidgkris应助麻薯头头采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
zh完成签到,获得积分10
16秒前
肖窈完成签到,获得积分10
18秒前
琉璃苣应助奇奇吃面采纳,获得10
18秒前
艺术家脾气完成签到,获得积分10
19秒前
23秒前
你在玩什么呢完成签到,获得积分10
23秒前
24秒前
刘晶发布了新的文献求助10
28秒前
28秒前
元谷雪应助QYW采纳,获得10
28秒前
David完成签到 ,获得积分10
28秒前
29秒前
李克杨发布了新的文献求助10
29秒前
Zll发布了新的文献求助10
30秒前
Hello应助太叔灭龙采纳,获得10
31秒前
你好啊发布了新的文献求助10
33秒前
夏岚关注了科研通微信公众号
34秒前
37秒前
111完成签到,获得积分10
38秒前
ZLY完成签到 ,获得积分10
39秒前
太叔灭龙完成签到,获得积分10
40秒前
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023