Interactive impact of landscape composition and configuration on river water quality under different spatial and seasonal scales

水质 河岸带 环境科学 分水岭 水文学(农业) 环境资源管理 生态学 计算机科学 栖息地 地质学 生物 岩土工程 机器学习
作者
Wei Pei,Qiyu Xu,Qiuliang Lei,Xinzhong Du,Jiafa Luo,Weiwen Qiu,Miaoying An,Tianpeng Zhang,Hongbin Liu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:950: 175027-175027
标识
DOI:10.1016/j.scitotenv.2024.175027
摘要

Currently, the comprehensive effect of the landscape pattern on river water quality has been widely studied. However, the interactive influences of landscape type, namely composition (COM) and configuration (CON) on water quality variations, as well as the specific landscape driving types affecting water quality variations under different spatial and seasonal scales remain unclear. To further improve the effectiveness of landscape planning and water quality protection, this study collected monthly water samples from the Fengyu River Watershed in southwestern China from 2018 to 2021, the Biota-Environment Matching Analysis (Bioenv) was used to identify key metrics representing landscape COM and CON, respectively. Then, the multiple regression (MLR) and redundancy analysis (RDA) were used to explore the relationship between these landscape metrics and water quality. In addition, this study used a variation partitioning analysis (VPA) to quantify the interactive and independent influence of landscape COM and CON on water quality. Results revealed that construction land and the Shannon's diversity index (SHDI) were the key metrics of landscape COM and CON, respectively, for predicting water pollution concentrations. The interactive contribution was particularly sensitive to seasonal changes in riparian buffer areas (27.66 % to 48.73 %), while it remained relatively stable at the sub-watershed scale (38.22 % to 40.51 %). Moreover, landscape CON had a higher independent contribution to variations on water quality across most spatio-temporal scales. Overall, identifying and managing key landscape type and consequential metrics, matching with the spatio-temporal scale, holds promise for enhancing water quality conservation. Furthermore, this study provides valuable insights into the identification and selection of core landscape metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪鸣完成签到,获得积分10
1秒前
午后狂睡完成签到 ,获得积分10
1秒前
玮哥不是伟哥完成签到,获得积分10
3秒前
4秒前
斯文败类应助qiao采纳,获得10
5秒前
直率的乐萱完成签到 ,获得积分10
5秒前
5秒前
阿士大夫完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助MoonKnight采纳,获得10
6秒前
8秒前
小火孩发布了新的文献求助10
10秒前
10秒前
11秒前
哈哈哈发布了新的文献求助10
17秒前
乐乐应助酷盖采纳,获得10
24秒前
25秒前
双木夕完成签到,获得积分10
25秒前
26秒前
古的古的应助双木夕采纳,获得10
29秒前
seven完成签到,获得积分10
30秒前
洪亮完成签到,获得积分10
31秒前
热心雁易发布了新的文献求助10
32秒前
32秒前
32秒前
fairy完成签到,获得积分10
33秒前
lzzk完成签到,获得积分10
34秒前
666完成签到 ,获得积分10
34秒前
祭酒完成签到 ,获得积分10
34秒前
闪闪秋凌发布了新的文献求助10
35秒前
35秒前
fairy发布了新的文献求助10
37秒前
大个应助热心雁易采纳,获得10
41秒前
43秒前
44秒前
李健应助葡萄成熟时采纳,获得10
45秒前
samifranco发布了新的文献求助80
47秒前
48秒前
fy发布了新的文献求助10
50秒前
曼夭非夭发布了新的文献求助20
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870