铜绿假单胞菌
强力霉素
细菌
生物膜
拟肽
细菌细胞结构
抗菌剂
微生物学
抗生素
化学
脂质双层
膜
细胞膜
佐剂
细胞内
生物
生物化学
肽
免疫学
遗传学
作者
Yuwei Zheng,Jiaying Chi,J H Ou,Ling Jiang,Liqing Wang,Rui Luo,Yilang Yan,Zejun Xu,Tingting Peng,Jianfeng Cai,Chuanbin Wu,Peng Teng,Guilan Quan,Chao Lü
标识
DOI:10.1002/adhm.202400664
摘要
Abstract The development of narrow‐spectrum antimicrobial agents is paramount for swiftly eradicating pathogenic bacteria, mitigating the onset of drug resistance, and preserving the homeostasis of bacterial microbiota in tissues. Owing to the limited affinity between the hydrophobic lipid bilayer interior of bacterial cells and most hydrophilic, polar peptides, the construction of a distinctive class of four‐armed host‐defense peptides/peptidomimetics (HDPs) is proposed with enhanced specificity and membrane perturbation capability against Pseudomonas aeruginosa by incorporating imidazole groups. These groups demonstrate substantial affinity for unsaturated phospholipids, which are predominantly expressed in the cell membrane of P. aeruginosa , thereby enabling HDPs to exhibit narrow‐spectrum activity against this bacterium. Computational simulations and experimental investigations have corroborated that the imidazole‐rich, four‐armed peptidomimetics exhibit notable selectivity toward bacteria over mammalian cells. Among them, 4H10, characterized by its abundant and densely distributed imidazole groups, exhibits impressive activity against various clinically isolated P. aeruginosa strains. Moreover, 4H10 has demonstrated potential as an antibiotic adjuvant, enhancing doxycycline accumulation and exerting effects on intracellular targets by efficiently disrupting bacterial cell membranes. Consequently, the hydrogel composed of 4H10 and doxycycline emerged as a promising topical agent, significantly diminishing the skin P. aeruginosa burden by 97.1% within 2 days while inducing minimal local and systemic toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI