Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region

遥感 生物量(生态学) 温带气候 领域(数学) 温带雨林 环境科学 温带森林 估计 地理 生态学 生态系统 数学 工程类 生物 系统工程 纯数学
作者
Shoaib Ahmad Anees,Kaleem Mehmood,Waseem Razzaq Khan,Muhammad U. Sajjad,Tahani Awad Alahmadi,Sulaiman Ali Alharbi,Mi Luo
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102732-102732 被引量:4
标识
DOI:10.1016/j.ecoinf.2024.102732
摘要

Accurately estimating aboveground biomass (AGB) in forest ecosystems facilitates efficient resource management, carbon accounting, and conservation efforts. This study examines the relationship between predictors from Landsat-9 remote sensing data and several topographical features. While Landsat-9 provides reliable data crucial for long-term monitoring, it is part of a broader suite of available remote sensing technologies. We employ machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Random Forest (RF), alongside linear regression techniques like Multiple Linear Regression (MLR). The primary objectives of this study encompass two key aspects. Firstly, the research methodically selects optimal predictor combinations from four distinct variable groups: Landsat-9 (L1) data, a fusion of Landsat-9 data and Vegetation-based indices (L2), and the integration of Landsat-9 data with the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) (L3) and the combination of best predictors (L4) derived from L1, L2, and L3. Secondly, the research systematically assesses the effectiveness of different algorithms to identify the most precise method for establishing any potential relationship between field-measured AGB and predictor variables. Our study revealed that the Random Forest (RF) model was the most efficient method utilizing Landsat-9 OLI and SRTM DEM (L3) predictors, achieving remarkable accuracy. This conclusion was reached by assessing its outstanding performance when compared to an independent validation dataset. The RF model exhibited remarkable accuracy, presenting relative mean absolute error (RMAE), relative root mean square error (RRMSE), and R2 values of 14.33%, 22.23%, and 0.81, respectively. The XGBoost model is the subsequent choice with RMAE, RRMSE, and R2 values of 15.54%, 23.85%, and 0.77, respectively. The study further highlights the significance of specific spectral bands, notably B4 and B5 from Landsat 9 OLI data, in capturing spatial AGB distribution patterns. Integration of vegetation-based indices, including TNDVI, NDVI, RVI, and GNDVI, further refines AGB mapping precision. Elevation, slope, and the Topographic Wetness Index (TWI) are crucial proxies for representing biophysical and biological mechanisms impacting AGB. Through the utilization of openly accessible fine-resolution data and employing the RF algorithm, the research demonstrated promising outcomes in the identification of optimal predictor-algorithm combinations for forest AGB mapping. This comprehensive approach offers a valuable avenue for informed decision-making in forest management, carbon assessment, and ecological monitoring initiatives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wonder罗发布了新的文献求助10
刚刚
Twonej给lilianan的求助进行了留言
2秒前
dddddw完成签到,获得积分10
3秒前
儒雅致远发布了新的文献求助10
3秒前
4秒前
祖乐萱发布了新的文献求助10
6秒前
陈信宏完成签到,获得积分10
7秒前
7秒前
逍遥子完成签到,获得积分10
7秒前
8秒前
ff发布了新的文献求助10
9秒前
浮游应助djbj2022采纳,获得10
9秒前
科研通AI6应助双夏采纳,获得30
11秒前
冬日空虚完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
大个应助小黄采纳,获得10
15秒前
16秒前
16秒前
jack发布了新的文献求助10
17秒前
爱笑的天空完成签到,获得积分10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
simdows完成签到,获得积分10
21秒前
科研通AI6应助季文婷采纳,获得10
21秒前
脑洞疼应助jack采纳,获得10
25秒前
123应助儒雅致远采纳,获得10
25秒前
慕青应助儒雅致远采纳,获得10
25秒前
善学以致用应助万事都灵采纳,获得10
26秒前
Wonder罗完成签到,获得积分20
27秒前
小蘑菇应助坦率幻灵采纳,获得10
31秒前
31秒前
32秒前
33秒前
35秒前
msf0073应助JJJ采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741