Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region

遥感 生物量(生态学) 温带气候 领域(数学) 温带雨林 环境科学 温带森林 估计 地理 生态学 生态系统 数学 工程类 生物 系统工程 纯数学
作者
Shoaib Ahmad Anees,Kaleem Mehmood,Waseem Razzaq Khan,Muhammad U. Sajjad,Tahani Awad Alahmadi,Sulaiman Ali Alharbi,Mi Luo
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102732-102732 被引量:4
标识
DOI:10.1016/j.ecoinf.2024.102732
摘要

Accurately estimating aboveground biomass (AGB) in forest ecosystems facilitates efficient resource management, carbon accounting, and conservation efforts. This study examines the relationship between predictors from Landsat-9 remote sensing data and several topographical features. While Landsat-9 provides reliable data crucial for long-term monitoring, it is part of a broader suite of available remote sensing technologies. We employ machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Random Forest (RF), alongside linear regression techniques like Multiple Linear Regression (MLR). The primary objectives of this study encompass two key aspects. Firstly, the research methodically selects optimal predictor combinations from four distinct variable groups: Landsat-9 (L1) data, a fusion of Landsat-9 data and Vegetation-based indices (L2), and the integration of Landsat-9 data with the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) (L3) and the combination of best predictors (L4) derived from L1, L2, and L3. Secondly, the research systematically assesses the effectiveness of different algorithms to identify the most precise method for establishing any potential relationship between field-measured AGB and predictor variables. Our study revealed that the Random Forest (RF) model was the most efficient method utilizing Landsat-9 OLI and SRTM DEM (L3) predictors, achieving remarkable accuracy. This conclusion was reached by assessing its outstanding performance when compared to an independent validation dataset. The RF model exhibited remarkable accuracy, presenting relative mean absolute error (RMAE), relative root mean square error (RRMSE), and R2 values of 14.33%, 22.23%, and 0.81, respectively. The XGBoost model is the subsequent choice with RMAE, RRMSE, and R2 values of 15.54%, 23.85%, and 0.77, respectively. The study further highlights the significance of specific spectral bands, notably B4 and B5 from Landsat 9 OLI data, in capturing spatial AGB distribution patterns. Integration of vegetation-based indices, including TNDVI, NDVI, RVI, and GNDVI, further refines AGB mapping precision. Elevation, slope, and the Topographic Wetness Index (TWI) are crucial proxies for representing biophysical and biological mechanisms impacting AGB. Through the utilization of openly accessible fine-resolution data and employing the RF algorithm, the research demonstrated promising outcomes in the identification of optimal predictor-algorithm combinations for forest AGB mapping. This comprehensive approach offers a valuable avenue for informed decision-making in forest management, carbon assessment, and ecological monitoring initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澎鱼盐完成签到,获得积分10
刚刚
jianjiao完成签到,获得积分10
刚刚
柒玥完成签到,获得积分10
1秒前
杨涛发布了新的文献求助10
1秒前
lisa完成签到 ,获得积分10
2秒前
3秒前
上山打老虎完成签到,获得积分10
3秒前
Joanna发布了新的文献求助10
4秒前
亮山火马完成签到,获得积分10
5秒前
小刘完成签到,获得积分10
6秒前
虢国国境发布了新的文献求助10
6秒前
6秒前
宁静致远完成签到,获得积分10
7秒前
7秒前
晴晨完成签到 ,获得积分10
8秒前
Rich_WH完成签到,获得积分10
8秒前
青青青青完成签到,获得积分10
8秒前
缓慢思枫完成签到,获得积分10
9秒前
mingbaishi2022完成签到,获得积分10
9秒前
魔叶树完成签到 ,获得积分10
9秒前
9秒前
10秒前
胡123完成签到,获得积分20
11秒前
stel7发布了新的文献求助10
11秒前
五颜六色的白完成签到,获得积分10
12秒前
12秒前
木湾完成签到,获得积分10
12秒前
13秒前
Pan完成签到,获得积分10
14秒前
14秒前
圈圈完成签到,获得积分10
14秒前
喵呜发布了新的文献求助10
15秒前
快快找到你完成签到,获得积分10
15秒前
huvy完成签到 ,获得积分10
15秒前
zhuzhu完成签到,获得积分10
15秒前
16秒前
冰棍鸡杂发布了新的文献求助10
16秒前
KAWHI完成签到,获得积分10
17秒前
17秒前
Stageruner发布了新的文献求助30
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167504
求助须知:如何正确求助?哪些是违规求助? 2819024
关于积分的说明 7924226
捐赠科研通 2478829
什么是DOI,文献DOI怎么找? 1320511
科研通“疑难数据库(出版商)”最低求助积分说明 632810
版权声明 602443