Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region

遥感 生物量(生态学) 温带气候 领域(数学) 温带雨林 环境科学 温带森林 估计 地理 生态学 生态系统 数学 工程类 生物 系统工程 纯数学
作者
Shoaib Ahmad Anees,Kaleem Mehmood,Waseem Razzaq Khan,Muhammad U. Sajjad,Tahani Awad Alahmadi,Sulaiman Ali Alharbi,Mi Luo
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:82: 102732-102732 被引量:4
标识
DOI:10.1016/j.ecoinf.2024.102732
摘要

Accurately estimating aboveground biomass (AGB) in forest ecosystems facilitates efficient resource management, carbon accounting, and conservation efforts. This study examines the relationship between predictors from Landsat-9 remote sensing data and several topographical features. While Landsat-9 provides reliable data crucial for long-term monitoring, it is part of a broader suite of available remote sensing technologies. We employ machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Random Forest (RF), alongside linear regression techniques like Multiple Linear Regression (MLR). The primary objectives of this study encompass two key aspects. Firstly, the research methodically selects optimal predictor combinations from four distinct variable groups: Landsat-9 (L1) data, a fusion of Landsat-9 data and Vegetation-based indices (L2), and the integration of Landsat-9 data with the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) (L3) and the combination of best predictors (L4) derived from L1, L2, and L3. Secondly, the research systematically assesses the effectiveness of different algorithms to identify the most precise method for establishing any potential relationship between field-measured AGB and predictor variables. Our study revealed that the Random Forest (RF) model was the most efficient method utilizing Landsat-9 OLI and SRTM DEM (L3) predictors, achieving remarkable accuracy. This conclusion was reached by assessing its outstanding performance when compared to an independent validation dataset. The RF model exhibited remarkable accuracy, presenting relative mean absolute error (RMAE), relative root mean square error (RRMSE), and R2 values of 14.33%, 22.23%, and 0.81, respectively. The XGBoost model is the subsequent choice with RMAE, RRMSE, and R2 values of 15.54%, 23.85%, and 0.77, respectively. The study further highlights the significance of specific spectral bands, notably B4 and B5 from Landsat 9 OLI data, in capturing spatial AGB distribution patterns. Integration of vegetation-based indices, including TNDVI, NDVI, RVI, and GNDVI, further refines AGB mapping precision. Elevation, slope, and the Topographic Wetness Index (TWI) are crucial proxies for representing biophysical and biological mechanisms impacting AGB. Through the utilization of openly accessible fine-resolution data and employing the RF algorithm, the research demonstrated promising outcomes in the identification of optimal predictor-algorithm combinations for forest AGB mapping. This comprehensive approach offers a valuable avenue for informed decision-making in forest management, carbon assessment, and ecological monitoring initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
4秒前
在水一方应助迷路的忆之采纳,获得10
4秒前
Dead Cells完成签到,获得积分10
4秒前
着急的柔完成签到,获得积分10
4秒前
有魅力的小蜜蜂完成签到,获得积分10
5秒前
慕青应助lizhaonian采纳,获得10
5秒前
耍酷的傲霜完成签到,获得积分10
6秒前
善学以致用应助jjsun采纳,获得10
7秒前
EED应助文件撤销了驳回
7秒前
小蘑菇应助年轻的烨华采纳,获得10
8秒前
8秒前
zzz发布了新的文献求助10
9秒前
研友_Zzrx6Z完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
汉堡包应助NOTHING采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得50
12秒前
quhayley应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
坦率的匪应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得50
13秒前
orixero应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得50
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
czh应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
14秒前
SYLH应助科研通管家采纳,获得50
14秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
斯文败类应助Keyl采纳,获得10
14秒前
褪黑素应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021