亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region

遥感 生物量(生态学) 温带气候 领域(数学) 温带雨林 环境科学 温带森林 估计 地理 生态学 生态系统 数学 工程类 生物 系统工程 纯数学
作者
Shoaib Ahmad Anees,Kaleem Mehmood,Waseem Razzaq Khan,Muhammad U. Sajjad,Tahani Awad Alahmadi,Sulaiman Ali Alharbi,Mi Luo
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102732-102732 被引量:4
标识
DOI:10.1016/j.ecoinf.2024.102732
摘要

Accurately estimating aboveground biomass (AGB) in forest ecosystems facilitates efficient resource management, carbon accounting, and conservation efforts. This study examines the relationship between predictors from Landsat-9 remote sensing data and several topographical features. While Landsat-9 provides reliable data crucial for long-term monitoring, it is part of a broader suite of available remote sensing technologies. We employ machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Random Forest (RF), alongside linear regression techniques like Multiple Linear Regression (MLR). The primary objectives of this study encompass two key aspects. Firstly, the research methodically selects optimal predictor combinations from four distinct variable groups: Landsat-9 (L1) data, a fusion of Landsat-9 data and Vegetation-based indices (L2), and the integration of Landsat-9 data with the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) (L3) and the combination of best predictors (L4) derived from L1, L2, and L3. Secondly, the research systematically assesses the effectiveness of different algorithms to identify the most precise method for establishing any potential relationship between field-measured AGB and predictor variables. Our study revealed that the Random Forest (RF) model was the most efficient method utilizing Landsat-9 OLI and SRTM DEM (L3) predictors, achieving remarkable accuracy. This conclusion was reached by assessing its outstanding performance when compared to an independent validation dataset. The RF model exhibited remarkable accuracy, presenting relative mean absolute error (RMAE), relative root mean square error (RRMSE), and R2 values of 14.33%, 22.23%, and 0.81, respectively. The XGBoost model is the subsequent choice with RMAE, RRMSE, and R2 values of 15.54%, 23.85%, and 0.77, respectively. The study further highlights the significance of specific spectral bands, notably B4 and B5 from Landsat 9 OLI data, in capturing spatial AGB distribution patterns. Integration of vegetation-based indices, including TNDVI, NDVI, RVI, and GNDVI, further refines AGB mapping precision. Elevation, slope, and the Topographic Wetness Index (TWI) are crucial proxies for representing biophysical and biological mechanisms impacting AGB. Through the utilization of openly accessible fine-resolution data and employing the RF algorithm, the research demonstrated promising outcomes in the identification of optimal predictor-algorithm combinations for forest AGB mapping. This comprehensive approach offers a valuable avenue for informed decision-making in forest management, carbon assessment, and ecological monitoring initiatives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级野狼发布了新的文献求助10
1秒前
危笑发布了新的文献求助20
4秒前
6秒前
Tine完成签到,获得积分10
8秒前
Tine发布了新的文献求助10
11秒前
smm完成签到 ,获得积分10
11秒前
科研通AI6.1应助muuuu采纳,获得30
11秒前
不摇碧莲完成签到 ,获得积分10
11秒前
13秒前
14秒前
三岁完成签到 ,获得积分10
17秒前
17秒前
light111发布了新的文献求助10
18秒前
传统的丹雪完成签到,获得积分10
18秒前
19秒前
20秒前
SIKI发布了新的文献求助10
22秒前
小羊要努力完成签到,获得积分10
23秒前
李同学发布了新的文献求助30
24秒前
35秒前
英俊的铭应助科研通管家采纳,获得10
35秒前
36秒前
李爱国应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
37秒前
无私的寄灵完成签到 ,获得积分10
37秒前
42秒前
Rita发布了新的文献求助10
43秒前
Lh发布了新的文献求助10
43秒前
乐乐应助超级野狼采纳,获得10
43秒前
大力的图图完成签到,获得积分10
45秒前
危笑完成签到,获得积分10
48秒前
52秒前
yjx完成签到 ,获得积分10
54秒前
孤标傲世完成签到 ,获得积分10
54秒前
冷静新烟完成签到,获得积分10
54秒前
梦璃完成签到 ,获得积分10
55秒前
57秒前
58秒前
Yuki发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754644
求助须知:如何正确求助?哪些是违规求助? 5488236
关于积分的说明 15380380
捐赠科研通 4893172
什么是DOI,文献DOI怎么找? 2631766
邀请新用户注册赠送积分活动 1579709
关于科研通互助平台的介绍 1535463