Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region

遥感 生物量(生态学) 温带气候 领域(数学) 温带雨林 环境科学 温带森林 估计 地理 生态学 生态系统 数学 工程类 生物 系统工程 纯数学
作者
Shoaib Ahmad Anees,Kaleem Mehmood,Waseem Razzaq Khan,Muhammad U. Sajjad,Tahani Awad Alahmadi,Sulaiman Ali Alharbi,Mi Luo
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:82: 102732-102732 被引量:4
标识
DOI:10.1016/j.ecoinf.2024.102732
摘要

Accurately estimating aboveground biomass (AGB) in forest ecosystems facilitates efficient resource management, carbon accounting, and conservation efforts. This study examines the relationship between predictors from Landsat-9 remote sensing data and several topographical features. While Landsat-9 provides reliable data crucial for long-term monitoring, it is part of a broader suite of available remote sensing technologies. We employ machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Random Forest (RF), alongside linear regression techniques like Multiple Linear Regression (MLR). The primary objectives of this study encompass two key aspects. Firstly, the research methodically selects optimal predictor combinations from four distinct variable groups: Landsat-9 (L1) data, a fusion of Landsat-9 data and Vegetation-based indices (L2), and the integration of Landsat-9 data with the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) (L3) and the combination of best predictors (L4) derived from L1, L2, and L3. Secondly, the research systematically assesses the effectiveness of different algorithms to identify the most precise method for establishing any potential relationship between field-measured AGB and predictor variables. Our study revealed that the Random Forest (RF) model was the most efficient method utilizing Landsat-9 OLI and SRTM DEM (L3) predictors, achieving remarkable accuracy. This conclusion was reached by assessing its outstanding performance when compared to an independent validation dataset. The RF model exhibited remarkable accuracy, presenting relative mean absolute error (RMAE), relative root mean square error (RRMSE), and R2 values of 14.33%, 22.23%, and 0.81, respectively. The XGBoost model is the subsequent choice with RMAE, RRMSE, and R2 values of 15.54%, 23.85%, and 0.77, respectively. The study further highlights the significance of specific spectral bands, notably B4 and B5 from Landsat 9 OLI data, in capturing spatial AGB distribution patterns. Integration of vegetation-based indices, including TNDVI, NDVI, RVI, and GNDVI, further refines AGB mapping precision. Elevation, slope, and the Topographic Wetness Index (TWI) are crucial proxies for representing biophysical and biological mechanisms impacting AGB. Through the utilization of openly accessible fine-resolution data and employing the RF algorithm, the research demonstrated promising outcomes in the identification of optimal predictor-algorithm combinations for forest AGB mapping. This comprehensive approach offers a valuable avenue for informed decision-making in forest management, carbon assessment, and ecological monitoring initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助从容谷菱采纳,获得10
刚刚
刚刚
罗静完成签到,获得积分10
刚刚
勤恳的德地完成签到,获得积分10
刚刚
大力完成签到 ,获得积分10
1秒前
科研通AI5应助wikkk采纳,获得10
1秒前
傲娇的蛋挞完成签到,获得积分20
1秒前
张美美完成签到,获得积分10
1秒前
打打应助浊轶采纳,获得10
2秒前
haonanchen完成签到,获得积分10
2秒前
坚强似狮完成签到,获得积分10
2秒前
我要发文章完成签到 ,获得积分10
3秒前
司妧完成签到,获得积分10
3秒前
廖琪发布了新的文献求助10
3秒前
可爱的函函应助apt采纳,获得10
3秒前
ellen完成签到,获得积分10
3秒前
猕猴桃完成签到,获得积分10
4秒前
4秒前
4秒前
CQ完成签到,获得积分10
5秒前
sometime发布了新的文献求助20
5秒前
5秒前
JamesPei应助kk采纳,获得10
6秒前
cdm700完成签到,获得积分10
6秒前
MZG完成签到,获得积分10
6秒前
八乙基环辛四烯完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
慕容誉发布了新的文献求助30
8秒前
沉静小蚂蚁完成签到,获得积分10
8秒前
完美世界应助yinyin采纳,获得10
8秒前
gwh68964402gwh完成签到,获得积分10
8秒前
儒雅的如松完成签到 ,获得积分10
9秒前
jingluo完成签到 ,获得积分10
9秒前
南烛完成签到 ,获得积分10
9秒前
张大大完成签到,获得积分10
9秒前
坦率的棒棒糖完成签到,获得积分10
9秒前
科研通AI5应助ardejiang采纳,获得10
9秒前
、、、完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077