Predicting Cytotoxicity of Nanoparticles: A Meta-Analysis Using Machine Learning

细胞毒性 纳米颗粒 计算机科学 人工智能 化学 纳米技术 材料科学 生物化学 体外
作者
Ashish Masarkar,Auhin Kumar Maparu,Yaswanth Sai Nukavarapu,Beena Rai
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (17): 19991-20002
标识
DOI:10.1021/acsanm.4c02269
摘要

Cytotoxicity evaluation of nanoparticles (NPs) is regarded as a crucial step for their successful application in the biomedical industry. However, conventional experimental methodologies for cytotoxicity measurements are often expensive, time-consuming, and demand intense training in cell culture. In this study, we developed generalized machine learning (ML) models for both qualitative and quantitative prediction of cytotoxicity across a wide variety of NPs. In particular, a meta-analysis of cytotoxicity data was conducted from published literature on metallic, metal oxide, polymer, and carbon-based NPs, leading to the development of random forest-based regression and classification models for predicting cell viability from physicochemical properties of NPs, cellular attributes, and testing conditions. Our feature importance analysis showed that accurately predicting the cytotoxicity of NPs using the regression model requires knowledge of their composition, concentration, zeta potential, and size, as well as exposure time, toxicity assay, and tissue type. Interestingly, among these attributes, the information about composition of NPs or tissue type was not needed for achieving high accuracy in the qualitative prediction of cytotoxicity using the classification model, indicating its superior robustness compared to the regression model. These findings may encourage future researchers to employ ML models more effectively and frequently to reliably assess the safety of NPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖暖完成签到 ,获得积分10
1秒前
传奇3应助章丘吴彦祖采纳,获得10
1秒前
1秒前
wuwenyu发布了新的文献求助10
2秒前
zxy发布了新的文献求助10
2秒前
凌尘完成签到,获得积分10
2秒前
慕青应助samuel_wang采纳,获得10
3秒前
林夕6936发布了新的文献求助10
3秒前
3秒前
Ava应助Ryan采纳,获得10
3秒前
wu完成签到,获得积分10
4秒前
眼睛大的冰蓝完成签到,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得20
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
朝与暮完成签到,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Jojo发布了新的文献求助10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
yang完成签到,获得积分10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
6秒前
爱睡觉的森森完成签到,获得积分10
6秒前
ilihe应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
十三发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
ilihe应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得200
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770