Predicting Cytotoxicity of Nanoparticles: A Meta-Analysis Using Machine Learning

细胞毒性 纳米颗粒 计算机科学 人工智能 化学 纳米技术 材料科学 生物化学 体外
作者
Ashish Masarkar,Auhin Kumar Maparu,Yaswanth Sai Nukavarapu,Beena Rai
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (17): 19991-20002
标识
DOI:10.1021/acsanm.4c02269
摘要

Cytotoxicity evaluation of nanoparticles (NPs) is regarded as a crucial step for their successful application in the biomedical industry. However, conventional experimental methodologies for cytotoxicity measurements are often expensive, time-consuming, and demand intense training in cell culture. In this study, we developed generalized machine learning (ML) models for both qualitative and quantitative prediction of cytotoxicity across a wide variety of NPs. In particular, a meta-analysis of cytotoxicity data was conducted from published literature on metallic, metal oxide, polymer, and carbon-based NPs, leading to the development of random forest-based regression and classification models for predicting cell viability from physicochemical properties of NPs, cellular attributes, and testing conditions. Our feature importance analysis showed that accurately predicting the cytotoxicity of NPs using the regression model requires knowledge of their composition, concentration, zeta potential, and size, as well as exposure time, toxicity assay, and tissue type. Interestingly, among these attributes, the information about composition of NPs or tissue type was not needed for achieving high accuracy in the qualitative prediction of cytotoxicity using the classification model, indicating its superior robustness compared to the regression model. These findings may encourage future researchers to employ ML models more effectively and frequently to reliably assess the safety of NPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辛勤月饼完成签到,获得积分10
1秒前
1秒前
zzz关注了科研通微信公众号
1秒前
2秒前
我是老大应助Chichi采纳,获得10
2秒前
肖坤发布了新的文献求助10
2秒前
情怀应助称心寒松采纳,获得10
3秒前
杨杨完成签到 ,获得积分10
3秒前
3秒前
思源应助张垚采纳,获得10
3秒前
炸鱼饼发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助10
3秒前
4秒前
4秒前
Wang完成签到,获得积分10
4秒前
鹂鹂复霖霖完成签到,获得积分10
4秒前
安菲尔德完成签到,获得积分10
4秒前
4秒前
精明人达发布了新的文献求助10
4秒前
4秒前
虎啸山河完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
gmjinfeng完成签到,获得积分0
5秒前
6秒前
小Z发布了新的文献求助10
6秒前
ning发布了新的文献求助10
6秒前
简柠完成签到,获得积分10
6秒前
123完成签到,获得积分10
7秒前
小二郎应助荣浩宇采纳,获得10
7秒前
苏silence发布了新的文献求助10
7秒前
幽默的蜡烛完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006