异质结
工作职能
材料科学
半导体
共价有机骨架
卟啉
电子转移
光催化
载流子
化学工程
光电子学
化学物理
纳米技术
光化学
化学
催化作用
有机化学
图层(电子)
复合材料
工程类
多孔性
作者
Yu Xia,Gui‐Fang Huang,Yan Fan,Xiaolong Zhao,Lei Wang,Jingwei Huang,Houde She,Qizhao Wang
标识
DOI:10.1021/acs.jpcc.4c04463
摘要
Semiconductor heterojunctions could accelerate carrier separation and transfer for improving light-to-hydrogen (LTH) conversion efficiency. However, the lack of tight and efficient interfacial charge cross in three-dimensional semiconductor-based heterojunctions limits their practical application and the relevant profound understanding of the interfacial charge delivery. In this work, porphyrin (Cu)-based COF with a highly conjugated structure was deposited onto three-dimensional (3D) ZnIn2S4 by a facile solvothermal method to prepare a 3D/2D ZnIn2S4@CuP–Ph COF heterojunction. The content-optimized ZnIn2S4@CuP–Ph COF composite showed an excellent LTH conversion rate of up to 2667.94 μmol g–1 h–1, about 13.5 times higher than that of pristine ZnIn2S4. The significantly meliorated photocatalytic performance is attributed to the synergistically functioning contributors, that is, the fast interfacial charge transfer and the augmented light capturing capability after integration. Also, the work function results by DFT calculation reveals that the electrons of CuP–Ph COF (Φ = 4.41 eV) transfer from the interface electron delivery channels of the two components to ZIS (Φ = 7.03 eV) until the Fermi level of the two components reaches equilibrium. This moment, the work function of ZnIn2S4@CuP–Ph COF (Φ = 6.50 eV) lies between the two components, and an electron accumulation region is formed on the side of ZIS. Additionally, the free-energy barriers of hydrogen evolution dominated by ZnIn2S4@CuP–Ph COF (0.0955 eV) is much lower than that of ZnIn2S4 (0.1256 eV). This study possesses certain guiding significance for the design of organic–inorganic heterojunction photocatalysts for efficient LTH conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI