HAIR: Hypernetworks-based All-in-One Image Restoration

图像(数学) 图像复原 计算机科学 人工智能 图像处理
作者
Jin Xin Cao,Yi Cao,Li Pang,Deyu Meng,Xiangyong Cao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.08091
摘要

Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
X7完成签到,获得积分10
刚刚
所所应助刘鹏宇采纳,获得10
1秒前
酷波er应助无情的白桃采纳,获得10
1秒前
科研通AI5应助小香草采纳,获得10
1秒前
星star完成签到 ,获得积分10
1秒前
2秒前
2秒前
调皮的千万完成签到,获得积分10
2秒前
狂野觅云发布了新的文献求助10
2秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
小星完成签到,获得积分10
2秒前
cc发布了新的文献求助10
3秒前
小石发布了新的文献求助10
3秒前
阿宝完成签到,获得积分10
3秒前
lsx完成签到 ,获得积分10
3秒前
Owen应助Dream采纳,获得30
3秒前
4秒前
www完成签到,获得积分20
4秒前
受伤的大米完成签到,获得积分10
4秒前
ssgecust完成签到,获得积分10
4秒前
科研通AI5应助Passion采纳,获得10
5秒前
MXJ完成签到,获得积分10
6秒前
科研通AI5应助热心的早晨采纳,获得10
6秒前
txy完成签到,获得积分10
6秒前
6秒前
GCY完成签到,获得积分10
6秒前
cc完成签到,获得积分10
6秒前
han完成签到,获得积分10
7秒前
111完成签到,获得积分20
7秒前
通~发布了新的文献求助10
8秒前
hhh关闭了hhh文献求助
8秒前
章丘吴彦祖完成签到,获得积分20
8秒前
9秒前
研友_nv2r4n完成签到,获得积分10
9秒前
狂野觅云完成签到,获得积分10
9秒前
9秒前
小石完成签到,获得积分10
10秒前
独特的飞烟完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740