HAIR: Hypernetworks-based All-in-One Image Restoration

图像(数学) 图像复原 计算机科学 人工智能 图像处理
作者
Jin Xin Cao,Yi Cao,Li Pang,Deyu Meng,Xiangyong Cao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.08091
摘要

Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄沉鱼发布了新的文献求助10
刚刚
Hello应助电池博士采纳,获得10
刚刚
科研通AI6应助风中泰坦采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
水何澹澹完成签到,获得积分0
1秒前
1秒前
1秒前
2秒前
2秒前
杯莫停完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
独孤刘完成签到,获得积分10
3秒前
动听健柏发布了新的文献求助10
4秒前
4秒前
DrSong发布了新的文献求助30
4秒前
Jasper应助123采纳,获得10
4秒前
让我再眯一会儿完成签到 ,获得积分10
4秒前
真实的麦片完成签到,获得积分10
4秒前
Vivifang应助赵哼哼采纳,获得10
4秒前
脑洞疼应助典雅的俊驰采纳,获得10
5秒前
DDDDgx发布了新的文献求助10
5秒前
Hello应助玊尔采纳,获得10
5秒前
共享精神应助小吉麻麻采纳,获得10
5秒前
sss完成签到,获得积分10
5秒前
hzy发布了新的文献求助10
6秒前
虚室生白完成签到,获得积分10
6秒前
好好发布了新的文献求助10
6秒前
6秒前
6秒前
王小小发布了新的文献求助10
7秒前
8秒前
漂亮钢铁侠完成签到,获得积分10
8秒前
李爱国应助乐观的代桃采纳,获得10
8秒前
8秒前
9秒前
飞流直下完成签到 ,获得积分20
9秒前
善学以致用应助啊懂采纳,获得10
9秒前
共享精神应助YMing采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853