HAIR: Hypernetworks-based All-in-One Image Restoration

图像(数学) 图像复原 计算机科学 人工智能 图像处理
作者
Jin Xin Cao,Yi Cao,Li Pang,Deyu Meng,Xiangyong Cao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.08091
摘要

Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫山菡完成签到,获得积分10
1秒前
HCl完成签到,获得积分10
2秒前
2秒前
3秒前
Owen应助11111采纳,获得10
3秒前
yjdong发布了新的文献求助10
4秒前
躺着睡觉完成签到 ,获得积分10
4秒前
慕青应助搞怪的鱼采纳,获得10
4秒前
ELITOmiko完成签到,获得积分10
4秒前
5秒前
QWSS完成签到,获得积分20
5秒前
DXDXJX完成签到,获得积分0
6秒前
ding应助可靠的寒风采纳,获得10
6秒前
科研通AI6应助包容代芹采纳,获得10
7秒前
7秒前
Planck发布了新的文献求助10
7秒前
1x3完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
危机的易梦完成签到,获得积分10
10秒前
优TT发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
王科完成签到,获得积分10
14秒前
GGbond完成签到,获得积分10
14秒前
吴巷玉完成签到,获得积分10
14秒前
15秒前
软软萌萌关注了科研通微信公众号
15秒前
15秒前
15秒前
叶95发布了新的文献求助30
16秒前
16秒前
超级碧曼完成签到,获得积分10
16秒前
搞怪的鱼发布了新的文献求助10
17秒前
SciGPT应助摸鱼鱼采纳,获得10
17秒前
似雨若离发布了新的文献求助10
17秒前
会飞发布了新的文献求助10
18秒前
onlooker完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858