HAIR: Hypernetworks-based All-in-One Image Restoration

图像(数学) 图像复原 计算机科学 人工智能 图像处理
作者
Jin Xin Cao,Yi Cao,Li Pang,Deyu Meng,Xiangyong Cao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.08091
摘要

Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开放早晨关注了科研通微信公众号
刚刚
英姑应助初识采纳,获得10
刚刚
1秒前
Talha完成签到,获得积分20
2秒前
鲨鱼辣椒发布了新的文献求助10
2秒前
秋水发布了新的文献求助10
3秒前
受伤不斜发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
星辰大海应助yy采纳,获得10
3秒前
晓倩完成签到,获得积分10
3秒前
轻云触月发布了新的文献求助10
4秒前
罗翊彰发布了新的文献求助10
4秒前
阿晖发布了新的文献求助10
4秒前
简单安南完成签到,获得积分10
4秒前
情怀应助拉长的冬云采纳,获得10
4秒前
5秒前
5秒前
SSQ完成签到,获得积分10
5秒前
Unpaid完成签到,获得积分10
5秒前
arui发布了新的文献求助10
6秒前
yy完成签到,获得积分20
6秒前
嘟嘟发布了新的文献求助10
6秒前
xin完成签到,获得积分20
6秒前
bkagyin应助科研狗采纳,获得10
7秒前
Orange应助林曳采纳,获得10
7秒前
孔雀翎发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
zhuo完成签到,获得积分10
9秒前
科目三应助莫默采纳,获得10
10秒前
Jeamren完成签到,获得积分10
10秒前
YANDD完成签到,获得积分10
10秒前
内向以彤完成签到,获得积分10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401