已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HAIR: Hypernetworks-based All-in-One Image Restoration

图像(数学) 图像复原 计算机科学 人工智能 图像处理
作者
Jin Xin Cao,Yi Cao,Li Pang,Deyu Meng,Xiangyong Cao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.08091
摘要

Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑巧的融化完成签到 ,获得积分10
1秒前
开心的夜白完成签到 ,获得积分10
1秒前
Verity应助科研通管家采纳,获得10
1秒前
33应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
友好冥王星完成签到 ,获得积分10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
大模型应助喜宝采纳,获得10
1秒前
Akim应助科研通管家采纳,获得30
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
锦程发布了新的文献求助10
2秒前
陆碌路完成签到,获得积分10
2秒前
han完成签到,获得积分10
4秒前
qing应助ZZ采纳,获得10
4秒前
讨厌下雨天完成签到 ,获得积分10
5秒前
溺水小刀完成签到 ,获得积分10
5秒前
WEILAI完成签到 ,获得积分10
5秒前
维尼完成签到 ,获得积分10
6秒前
呆呆的猕猴桃完成签到 ,获得积分10
6秒前
锦程完成签到,获得积分10
9秒前
清风明月完成签到 ,获得积分10
9秒前
11秒前
舒服的摇伽完成签到 ,获得积分10
11秒前
mm_zxh完成签到,获得积分10
11秒前
11秒前
周周周完成签到 ,获得积分10
11秒前
年少丶完成签到,获得积分10
12秒前
凌奕添完成签到 ,获得积分10
13秒前
13秒前
聪慧的从雪完成签到 ,获得积分10
13秒前
Splaink完成签到 ,获得积分10
14秒前
奋斗的小笼包完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685197
关于积分的说明 14838182
捐赠科研通 4668952
什么是DOI,文献DOI怎么找? 2538068
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816

今日热心研友

无情的踏歌
140
嘿嘿
7
BowieHuang
40
Criminology34
40
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10