Classification of Pesticide Residues in Sorghum Based on Hyperspectral and Gradient Boosting Decision Trees

高光谱成像 Boosting(机器学习) 高粱 农药残留 决策树 梯度升压 杀虫剂 环境科学 人工智能 计算机科学 生物 农学 随机森林
作者
Xinjun Hu,Jiahong Zhang,Lei Yu,Jianping Tian,Jianheng Peng,Man Chen
出处
期刊:Journal of Food Safety [Wiley]
卷期号:44 (5)
标识
DOI:10.1111/jfs.13166
摘要

ABSTRACT To address the challenges posed by chemical methods for detecting pesticide residues in sorghum, such as complicated sample preparation and prolonged detection periods, this study presents a rapid and nondestructive detection approach based on hyperspectral imaging (HSI) technology. A group of sorghum without pesticide residues and three groups uniformly sprayed with pesticides were used in this study. Firstly, support vector machine (SVM) classification models were built using spectral data preprocessed with Savitzky–Golay (SG), discrete wavelet transform (DWT), and standard normal variate (SNV) methods, respectively, and SNV was determined to be the best preprocessing method. Secondly, the gradient boosting decision tree (GBDT) algorithm, principal component analysis (PCA), and the successive projections algorithm (SPA) were respectively used to extract feature wavelengths. Pesticide residue identification models based on full and feature wavelengths were then respectively established using backpropagation neural network (BPNN), SVM, and partial least squares discriminant analysis (PLS‐DA). The results show that the BPNN model developed using the feature wavelengths obtained from GBDT was the best for identification of pesticide residues, with an accuracy of 97.8% for both the training and testing sets. Finally, visualization of pesticide residue species in sorghum was achieved using the optimal model. This study demonstrates that utilizing HSI in conjunction with the GBDT‐BPNN model is an effective, rapid, and nondestructive method for identifying pesticide residues in sorghum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四叶草发布了新的文献求助20
1秒前
1秒前
Cean完成签到,获得积分10
3秒前
4秒前
xxxxxxx发布了新的文献求助10
4秒前
无花果应助小点点cy_采纳,获得10
4秒前
陶醉聪展完成签到 ,获得积分10
10秒前
10秒前
11秒前
pyc076完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
三日宝完成签到,获得积分10
15秒前
jindou完成签到,获得积分10
15秒前
英姑应助zychaos采纳,获得10
16秒前
薛定谔的键长完成签到,获得积分10
17秒前
远处的立交完成签到,获得积分10
17秒前
今后应助爱学习爱劳动采纳,获得10
17秒前
LLL发布了新的文献求助10
18秒前
19秒前
熹微发布了新的文献求助10
20秒前
XJ完成签到,获得积分10
21秒前
呆萌的岱周关注了科研通微信公众号
21秒前
22秒前
开心薯片关注了科研通微信公众号
23秒前
依依发布了新的文献求助10
24秒前
25秒前
25秒前
zychaos发布了新的文献求助10
27秒前
坚定的雁完成签到 ,获得积分10
28秒前
28秒前
29秒前
29秒前
wubinbin完成签到 ,获得积分10
30秒前
liu发布了新的文献求助10
30秒前
31秒前
32秒前
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753241
求助须知:如何正确求助?哪些是违规求助? 3296874
关于积分的说明 10096228
捐赠科研通 3011503
什么是DOI,文献DOI怎么找? 1653984
邀请新用户注册赠送积分活动 788565
科研通“疑难数据库(出版商)”最低求助积分说明 752907