Classification of Pesticide Residues in Sorghum Based on Hyperspectral and Gradient Boosting Decision Trees

高光谱成像 Boosting(机器学习) 高粱 农药残留 决策树 梯度升压 杀虫剂 环境科学 人工智能 计算机科学 生物 农学 随机森林
作者
Xinjun Hu,Jiahong Zhang,Lei Yu,Jianping Tian,Jianheng Peng,Man Chen
出处
期刊:Journal of Food Safety [Wiley]
卷期号:44 (5)
标识
DOI:10.1111/jfs.13166
摘要

ABSTRACT To address the challenges posed by chemical methods for detecting pesticide residues in sorghum, such as complicated sample preparation and prolonged detection periods, this study presents a rapid and nondestructive detection approach based on hyperspectral imaging (HSI) technology. A group of sorghum without pesticide residues and three groups uniformly sprayed with pesticides were used in this study. Firstly, support vector machine (SVM) classification models were built using spectral data preprocessed with Savitzky–Golay (SG), discrete wavelet transform (DWT), and standard normal variate (SNV) methods, respectively, and SNV was determined to be the best preprocessing method. Secondly, the gradient boosting decision tree (GBDT) algorithm, principal component analysis (PCA), and the successive projections algorithm (SPA) were respectively used to extract feature wavelengths. Pesticide residue identification models based on full and feature wavelengths were then respectively established using backpropagation neural network (BPNN), SVM, and partial least squares discriminant analysis (PLS‐DA). The results show that the BPNN model developed using the feature wavelengths obtained from GBDT was the best for identification of pesticide residues, with an accuracy of 97.8% for both the training and testing sets. Finally, visualization of pesticide residue species in sorghum was achieved using the optimal model. This study demonstrates that utilizing HSI in conjunction with the GBDT‐BPNN model is an effective, rapid, and nondestructive method for identifying pesticide residues in sorghum.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Www发布了新的文献求助10
1秒前
汉堡包应助Alec采纳,获得10
2秒前
3秒前
3秒前
沉静香氛完成签到 ,获得积分10
3秒前
洁净的士晋完成签到,获得积分10
4秒前
4秒前
xcz发布了新的文献求助10
5秒前
彭于晏应助晓晓雪采纳,获得10
5秒前
朴实的亿先完成签到,获得积分10
6秒前
7秒前
DrW发布了新的文献求助10
7秒前
陈zv完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
斯文又夏完成签到,获得积分10
9秒前
GuMingyang发布了新的文献求助10
10秒前
10秒前
11秒前
auggy发布了新的文献求助10
11秒前
12秒前
华清引完成签到,获得积分10
14秒前
liusoojoo完成签到,获得积分10
15秒前
戴岱完成签到,获得积分10
15秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
RARA-完成签到,获得积分10
16秒前
852应助直率柠檬采纳,获得10
16秒前
鳗鱼鞋垫发布了新的文献求助10
16秒前
月湖发布了新的文献求助10
17秒前
hhhhhhan616完成签到,获得积分10
17秒前
星辰大海应助清新的老四采纳,获得10
17秒前
董冬冬发布了新的文献求助10
18秒前
18秒前
SWZ发布了新的文献求助10
19秒前
simon完成签到,获得积分10
19秒前
DrW完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386467
求助须知:如何正确求助?哪些是违规求助? 2999562
关于积分的说明 8785720
捐赠科研通 2685226
什么是DOI,文献DOI怎么找? 1470896
科研通“疑难数据库(出版商)”最低求助积分说明 680018
邀请新用户注册赠送积分活动 672593