SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction

下部结构 计算机科学 人工神经网络 人工智能 图形 模式识别(心理学) 机器学习 理论计算机科学 结构工程 工程类
作者
Yuansheng Liu,Xinyan Xia,Yongshun Gong,Bosheng Song,Xiangxiang Zeng
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102983-102983 被引量:3
标识
DOI:10.1016/j.artmed.2024.102983
摘要

Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence-based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助小超人采纳,获得10
刚刚
gdh发布了新的文献求助10
1秒前
Manxi发布了新的文献求助10
1秒前
1秒前
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
HAL应助科研通管家采纳,获得10
2秒前
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
HAL应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
3秒前
nininidoc完成签到,获得积分10
4秒前
6秒前
zsgot3完成签到,获得积分10
6秒前
zy驳回了今后应助
7秒前
斯文明杰发布了新的文献求助10
7秒前
Iwan完成签到,获得积分10
7秒前
可爱的函函应助美好忆南采纳,获得10
8秒前
8秒前
Manxi完成签到,获得积分10
9秒前
光翟君完成签到,获得积分20
9秒前
超级的白竹完成签到,获得积分20
9秒前
10秒前
10秒前
hkh发布了新的文献求助10
11秒前
研友_VZG7GZ应助婷婷采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033