SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction

下部结构 计算机科学 人工神经网络 人工智能 图形 模式识别(心理学) 机器学习 理论计算机科学 结构工程 工程类
作者
Yuansheng Liu,Xinyan Xia,Yongshun Gong,Bosheng Song,Xiangxiang Zeng
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:157: 102983-102983
标识
DOI:10.1016/j.artmed.2024.102983
摘要

Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence-based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zj采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
时谦先生发布了新的文献求助10
4秒前
5秒前
华仔应助mei采纳,获得10
5秒前
搜集达人应助微笑的涛采纳,获得10
6秒前
Min发布了新的文献求助10
7秒前
唐唐完成签到 ,获得积分10
7秒前
小太阳发布了新的文献求助10
7秒前
8秒前
cc发布了新的文献求助10
8秒前
8秒前
5515713完成签到,获得积分10
9秒前
是啊豪ya发布了新的文献求助10
9秒前
彭于晏应助李国雨采纳,获得10
10秒前
11秒前
xuweitai发布了新的文献求助10
12秒前
脑洞疼应助Rigel采纳,获得10
12秒前
咕咕完成签到,获得积分10
12秒前
zedhumble完成签到,获得积分10
15秒前
hahaly发布了新的文献求助10
15秒前
16秒前
完美世界应助小草莓采纳,获得10
16秒前
Ava应助大力日记本采纳,获得10
17秒前
能HJY发布了新的文献求助10
18秒前
orixero应助ewk采纳,获得10
19秒前
123完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
20秒前
21秒前
时谦先生完成签到,获得积分10
21秒前
22秒前
23秒前
李健应助奋斗的鱼采纳,获得10
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542