已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction

下部结构 计算机科学 人工神经网络 人工智能 图形 模式识别(心理学) 机器学习 理论计算机科学 结构工程 工程类
作者
Yuansheng Liu,Xinyan Xia,Yongshun Gong,Bosheng Song,Xiangxiang Zeng
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:157: 102983-102983 被引量:3
标识
DOI:10.1016/j.artmed.2024.102983
摘要

Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence-based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助勤劳莹芝采纳,获得10
3秒前
orixero应助oyxz采纳,获得10
3秒前
HONG完成签到 ,获得积分10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
木又应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
Raven应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
哈基米德应助科研通管家采纳,获得10
6秒前
哈基米德应助科研通管家采纳,获得10
6秒前
6秒前
哈基米德应助科研通管家采纳,获得10
6秒前
哈基米德应助科研通管家采纳,获得25
6秒前
打打应助科研通管家采纳,获得10
6秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
10秒前
yyyhhhzzz0123发布了新的文献求助30
11秒前
arisw发布了新的文献求助10
11秒前
zhs发布了新的文献求助10
14秒前
16秒前
生椰拿铁死忠粉应助minya采纳,获得20
21秒前
妮妮完成签到 ,获得积分10
21秒前
李健的小迷弟应助北斗采纳,获得10
25秒前
坚定的泥猴桃完成签到 ,获得积分10
27秒前
阿泡阿茶和阿壶完成签到,获得积分10
30秒前
维维完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275