已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction

下部结构 计算机科学 人工神经网络 人工智能 图形 模式识别(心理学) 机器学习 理论计算机科学 结构工程 工程类
作者
Yuansheng Liu,Xinyan Xia,Yongshun Gong,Bosheng Song,Xiangxiang Zeng
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102983-102983 被引量:3
标识
DOI:10.1016/j.artmed.2024.102983
摘要

Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence-based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
danli发布了新的文献求助20
刚刚
刚刚
4秒前
xiaochao发布了新的文献求助30
4秒前
yowar完成签到,获得积分10
5秒前
想发sci完成签到,获得积分10
6秒前
黑巧的融化完成签到 ,获得积分10
6秒前
风中傲柔发布了新的文献求助10
6秒前
BX1823发布了新的文献求助10
7秒前
陈俐俐完成签到,获得积分10
8秒前
真龙狂婿完成签到,获得积分10
9秒前
ddddd发布了新的文献求助10
10秒前
滴嘟滴嘟完成签到 ,获得积分10
12秒前
14秒前
情怀应助gentille采纳,获得10
15秒前
15秒前
斯文败类应助ceeray23采纳,获得20
15秒前
王者归来完成签到,获得积分10
17秒前
爱笑的小羽毛完成签到,获得积分10
18秒前
Jeriu发布了新的文献求助10
18秒前
ahui完成签到 ,获得积分10
19秒前
雪白元风完成签到 ,获得积分10
19秒前
9527完成签到,获得积分10
23秒前
端庄亦巧完成签到 ,获得积分10
23秒前
深情安青应助banlu采纳,获得20
23秒前
25秒前
羊羊羊Kelly完成签到,获得积分10
26秒前
27秒前
西溪发布了新的文献求助10
28秒前
KKKKKkkk发布了新的文献求助10
28秒前
慈祥的蛋挞完成签到,获得积分10
29秒前
豆莎包发布了新的文献求助10
30秒前
可了不得完成签到 ,获得积分10
31秒前
Omni完成签到,获得积分10
36秒前
tkx是流氓兔完成签到,获得积分10
37秒前
龙骑士25完成签到 ,获得积分10
39秒前
obsession完成签到 ,获得积分10
39秒前
danli发布了新的文献求助20
40秒前
墨辰完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172597
求助须知:如何正确求助?哪些是违规求助? 4362775
关于积分的说明 13584396
捐赠科研通 4210832
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308631
关于科研通互助平台的介绍 1255818