The U-Net Enhanced Graph Neural Network for Multiphase Flow Prediction: An Implication to Geological Carbon Sequestration

计算机科学 人工神经网络 固碳 图形 网(多面体) 人工智能 理论计算机科学 化学 数学 几何学 有机化学 二氧化碳
作者
Zeeshan Tariq,Hussein Hoteit,Shuyu Sun,Moataz O. Abu-Al-Saud,Xupeng He,Muhammad M. Almajid,Bicheng Yan
出处
期刊:SPE Annual Technical Conference and Exhibition 卷期号:10
标识
DOI:10.2118/220757-ms
摘要

Abstract Monitoring CO2 pressure buildup and saturation plume movement throughout the operation of Geological Carbon Sequestration (GCS) projects is crucial for ensuring environmental safety. While the movement of CO2 plumes can be predicted with high-fidelity numerical simulations, these simulations are often computationally expensive. However, through training on readily available simulation datasets, recent advancements in data-driven models have made it possible to predict CO2 movement rapidly. In this study, we adopt the U-Net Enhanced Graph Convolutional Neural Network (U-GCN) to predict the spatial and temporal evolution of CO2 plume saturation and pressure buildup in a saline aquifer reservoir. Utilizing the U-Net architecture, which incorporates skip connections, enables U-GCN to capture high-level features and fine-grained details concurrently. First, we construct physics-based numerical simulation models that account for both GCS injection and post-injection periods. By employing Latin-Hypercube sampling, we generate a diverse range of reservoir and decision parameters, resulting in a comprehensive simulation database comprising 2000 simulation cases. We train and test the U-GCN model on a two-dimensional (2D) radial model to establish a U-GCN code benchmark. We utilize Mean Squared Error as the loss function throughout the U-GCN training process. The U-GCN model demonstrates robust performance on the radial model, achieving an R2 score of 0.993 for saturation prediction and an R2 of 0.989 for pressure buildup prediction based on the blind testing dataset. Notably, the Mean Absolute Percentage Error (MAPE) for all mappings consistently hovers around less than 5%, indicating the effectiveness of the trained models in predicting the temporal and spatial evolution of CO2 gas saturation. Moreover, the prediction CPU time for the DL models is significantly lower (0.02 seconds per case) than the physics-based reservoir simulator (on average, 45 to 60 minutes per case). This underscores the capability of the proposed method to provide predictions as accurate as physics-based simulations while reducing substantial computational costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张诗言发布了新的文献求助10
1秒前
皇甫弘文完成签到,获得积分10
1秒前
zhang发布了新的文献求助10
1秒前
雪白元风完成签到 ,获得积分10
1秒前
2秒前
2秒前
kk发布了新的文献求助30
2秒前
华仔应助淡定茉莉采纳,获得10
2秒前
3秒前
flylmy2008完成签到,获得积分10
3秒前
www发布了新的文献求助10
3秒前
ji发布了新的文献求助10
3秒前
123应助欧皇采纳,获得10
4秒前
雪白的冰蓝完成签到,获得积分10
4秒前
Jun完成签到,获得积分20
4秒前
4秒前
友好的匪完成签到,获得积分10
6秒前
LHH发布了新的文献求助10
7秒前
阔达宝莹发布了新的文献求助10
7秒前
halalalaa发布了新的文献求助10
8秒前
细腻的仙人掌给yar的求助进行了留言
10秒前
11秒前
11秒前
mmol发布了新的文献求助10
12秒前
善学以致用应助个性的荆采纳,获得10
12秒前
13秒前
浮浮世世发布了新的文献求助10
14秒前
yang1111完成签到 ,获得积分10
14秒前
平常树叶完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
飞飞完成签到,获得积分10
16秒前
dddddd发布了新的文献求助10
16秒前
……完成签到 ,获得积分10
16秒前
www完成签到,获得积分20
17秒前
明芬发布了新的文献求助10
17秒前
学习使我快乐完成签到 ,获得积分10
17秒前
18秒前
HM完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513