The U-Net Enhanced Graph Neural Network for Multiphase Flow Prediction: An Implication to Geological Carbon Sequestration

计算机科学 人工神经网络 固碳 图形 网(多面体) 人工智能 理论计算机科学 化学 数学 几何学 有机化学 二氧化碳
作者
Zeeshan Tariq,Hussein Hoteit,Shuyu Sun,Moataz O. Abu-Al-Saud,Xupeng He,Muhammad M. Almajid,Bicheng Yan
出处
期刊:SPE Annual Technical Conference and Exhibition 卷期号:10
标识
DOI:10.2118/220757-ms
摘要

Abstract Monitoring CO2 pressure buildup and saturation plume movement throughout the operation of Geological Carbon Sequestration (GCS) projects is crucial for ensuring environmental safety. While the movement of CO2 plumes can be predicted with high-fidelity numerical simulations, these simulations are often computationally expensive. However, through training on readily available simulation datasets, recent advancements in data-driven models have made it possible to predict CO2 movement rapidly. In this study, we adopt the U-Net Enhanced Graph Convolutional Neural Network (U-GCN) to predict the spatial and temporal evolution of CO2 plume saturation and pressure buildup in a saline aquifer reservoir. Utilizing the U-Net architecture, which incorporates skip connections, enables U-GCN to capture high-level features and fine-grained details concurrently. First, we construct physics-based numerical simulation models that account for both GCS injection and post-injection periods. By employing Latin-Hypercube sampling, we generate a diverse range of reservoir and decision parameters, resulting in a comprehensive simulation database comprising 2000 simulation cases. We train and test the U-GCN model on a two-dimensional (2D) radial model to establish a U-GCN code benchmark. We utilize Mean Squared Error as the loss function throughout the U-GCN training process. The U-GCN model demonstrates robust performance on the radial model, achieving an R2 score of 0.993 for saturation prediction and an R2 of 0.989 for pressure buildup prediction based on the blind testing dataset. Notably, the Mean Absolute Percentage Error (MAPE) for all mappings consistently hovers around less than 5%, indicating the effectiveness of the trained models in predicting the temporal and spatial evolution of CO2 gas saturation. Moreover, the prediction CPU time for the DL models is significantly lower (0.02 seconds per case) than the physics-based reservoir simulator (on average, 45 to 60 minutes per case). This underscores the capability of the proposed method to provide predictions as accurate as physics-based simulations while reducing substantial computational costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静山河完成签到,获得积分10
刚刚
刚刚
jjw123发布了新的文献求助10
刚刚
Jasper应助张啦啦采纳,获得30
1秒前
1秒前
慢慢学习的小白完成签到 ,获得积分20
2秒前
2秒前
2秒前
4秒前
炒饭发布了新的文献求助10
4秒前
魏武发布了新的文献求助10
5秒前
5秒前
6秒前
DamenS发布了新的文献求助10
6秒前
www完成签到,获得积分10
7秒前
盐焗鸡完成签到 ,获得积分10
8秒前
8秒前
DK发布了新的文献求助10
9秒前
nini发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
12秒前
zhou发布了新的文献求助10
12秒前
胡锦莲完成签到 ,获得积分20
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
Twonej应助科研通管家采纳,获得50
13秒前
wanci应助李煜琛采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
14秒前
woyufengtian完成签到,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
要长脑子了完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679606
求助须知:如何正确求助?哪些是违规求助? 4992257
关于积分的说明 15170256
捐赠科研通 4839486
什么是DOI,文献DOI怎么找? 2593346
邀请新用户注册赠送积分活动 1546500
关于科研通互助平台的介绍 1504594