已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The U-Net Enhanced Graph Neural Network for Multiphase Flow Prediction: An Implication to Geological Carbon Sequestration

计算机科学 人工神经网络 固碳 图形 网(多面体) 人工智能 理论计算机科学 化学 数学 几何学 有机化学 二氧化碳
作者
Zeeshan Tariq,Hussein Hoteit,Shuyu Sun,Moataz O. Abu-Al-Saud,Xupeng He,Muhammad M. Almajid,Bicheng Yan
出处
期刊:SPE Annual Technical Conference and Exhibition 卷期号:10
标识
DOI:10.2118/220757-ms
摘要

Abstract Monitoring CO2 pressure buildup and saturation plume movement throughout the operation of Geological Carbon Sequestration (GCS) projects is crucial for ensuring environmental safety. While the movement of CO2 plumes can be predicted with high-fidelity numerical simulations, these simulations are often computationally expensive. However, through training on readily available simulation datasets, recent advancements in data-driven models have made it possible to predict CO2 movement rapidly. In this study, we adopt the U-Net Enhanced Graph Convolutional Neural Network (U-GCN) to predict the spatial and temporal evolution of CO2 plume saturation and pressure buildup in a saline aquifer reservoir. Utilizing the U-Net architecture, which incorporates skip connections, enables U-GCN to capture high-level features and fine-grained details concurrently. First, we construct physics-based numerical simulation models that account for both GCS injection and post-injection periods. By employing Latin-Hypercube sampling, we generate a diverse range of reservoir and decision parameters, resulting in a comprehensive simulation database comprising 2000 simulation cases. We train and test the U-GCN model on a two-dimensional (2D) radial model to establish a U-GCN code benchmark. We utilize Mean Squared Error as the loss function throughout the U-GCN training process. The U-GCN model demonstrates robust performance on the radial model, achieving an R2 score of 0.993 for saturation prediction and an R2 of 0.989 for pressure buildup prediction based on the blind testing dataset. Notably, the Mean Absolute Percentage Error (MAPE) for all mappings consistently hovers around less than 5%, indicating the effectiveness of the trained models in predicting the temporal and spatial evolution of CO2 gas saturation. Moreover, the prediction CPU time for the DL models is significantly lower (0.02 seconds per case) than the physics-based reservoir simulator (on average, 45 to 60 minutes per case). This underscores the capability of the proposed method to provide predictions as accurate as physics-based simulations while reducing substantial computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RHJ完成签到 ,获得积分10
4秒前
Skye完成签到 ,获得积分10
9秒前
12秒前
陶瓷小罐完成签到 ,获得积分10
14秒前
狂野的含烟完成签到 ,获得积分10
14秒前
nature发布了新的文献求助10
15秒前
Mingchun完成签到 ,获得积分10
16秒前
ele_yuki完成签到,获得积分10
18秒前
20秒前
烟花应助柠栀采纳,获得10
22秒前
在水一方应助三水采纳,获得10
25秒前
木槿完成签到,获得积分10
26秒前
郭娅楠完成签到 ,获得积分10
26秒前
yuyuyu发布了新的文献求助10
29秒前
半城微凉应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
王梦豪发布了新的文献求助10
32秒前
37秒前
45秒前
50秒前
50秒前
今后应助江洋大盗采纳,获得10
52秒前
susu发布了新的文献求助10
54秒前
ding应助李治稳采纳,获得10
55秒前
深情断秋发布了新的文献求助10
55秒前
huangy完成签到,获得积分10
55秒前
56秒前
整齐乐荷发布了新的文献求助30
56秒前
量子星尘发布了新的文献求助100
59秒前
高源伯完成签到 ,获得积分10
59秒前
田様应助nature采纳,获得10
1分钟前
小二郎应助狂野的蜡烛采纳,获得10
1分钟前
zty123发布了新的文献求助10
1分钟前
老Mark完成签到,获得积分10
1分钟前
sss完成签到 ,获得积分10
1分钟前
整齐乐荷完成签到,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595