已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The U-Net Enhanced Graph Neural Network for Multiphase Flow Prediction: An Implication to Geological Carbon Sequestration

计算机科学 人工神经网络 固碳 图形 网(多面体) 人工智能 理论计算机科学 化学 数学 几何学 有机化学 二氧化碳
作者
Zeeshan Tariq,Hussein Hoteit,Shuyu Sun,Moataz O. Abu-Al-Saud,Xupeng He,Muhammad M. Almajid,Bicheng Yan
出处
期刊:SPE Annual Technical Conference and Exhibition 卷期号:10
标识
DOI:10.2118/220757-ms
摘要

Abstract Monitoring CO2 pressure buildup and saturation plume movement throughout the operation of Geological Carbon Sequestration (GCS) projects is crucial for ensuring environmental safety. While the movement of CO2 plumes can be predicted with high-fidelity numerical simulations, these simulations are often computationally expensive. However, through training on readily available simulation datasets, recent advancements in data-driven models have made it possible to predict CO2 movement rapidly. In this study, we adopt the U-Net Enhanced Graph Convolutional Neural Network (U-GCN) to predict the spatial and temporal evolution of CO2 plume saturation and pressure buildup in a saline aquifer reservoir. Utilizing the U-Net architecture, which incorporates skip connections, enables U-GCN to capture high-level features and fine-grained details concurrently. First, we construct physics-based numerical simulation models that account for both GCS injection and post-injection periods. By employing Latin-Hypercube sampling, we generate a diverse range of reservoir and decision parameters, resulting in a comprehensive simulation database comprising 2000 simulation cases. We train and test the U-GCN model on a two-dimensional (2D) radial model to establish a U-GCN code benchmark. We utilize Mean Squared Error as the loss function throughout the U-GCN training process. The U-GCN model demonstrates robust performance on the radial model, achieving an R2 score of 0.993 for saturation prediction and an R2 of 0.989 for pressure buildup prediction based on the blind testing dataset. Notably, the Mean Absolute Percentage Error (MAPE) for all mappings consistently hovers around less than 5%, indicating the effectiveness of the trained models in predicting the temporal and spatial evolution of CO2 gas saturation. Moreover, the prediction CPU time for the DL models is significantly lower (0.02 seconds per case) than the physics-based reservoir simulator (on average, 45 to 60 minutes per case). This underscores the capability of the proposed method to provide predictions as accurate as physics-based simulations while reducing substantial computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王王汪汪旺旺完成签到 ,获得积分10
2秒前
贱小贱完成签到,获得积分10
2秒前
直率的傲安完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
6秒前
AM发布了新的文献求助10
7秒前
xiao完成签到,获得积分10
11秒前
妮露的修狗完成签到,获得积分10
11秒前
神勇丹烟完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助AM采纳,获得10
15秒前
桃甜汽水完成签到 ,获得积分10
16秒前
16秒前
芝士雪豹完成签到 ,获得积分10
17秒前
深情安青应助xiao采纳,获得10
20秒前
21秒前
21秒前
21秒前
Jasper应助Jj采纳,获得10
22秒前
痴情的明辉完成签到 ,获得积分10
23秒前
knight0524发布了新的文献求助10
24秒前
25秒前
小陈陈要读博完成签到,获得积分10
29秒前
大力水手发布了新的文献求助10
30秒前
31秒前
31秒前
32秒前
32秒前
33秒前
Lucas应助小陈陈要读博采纳,获得10
34秒前
清风发布了新的文献求助10
35秒前
Jj发布了新的文献求助10
35秒前
漂亮白云发布了新的文献求助30
38秒前
39秒前
LSY完成签到 ,获得积分10
43秒前
47秒前
研友Bn完成签到 ,获得积分10
51秒前
gypsi完成签到,获得积分10
51秒前
52秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162132
求助须知:如何正确求助?哪些是违规求助? 2813202
关于积分的说明 7899183
捐赠科研通 2472372
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631314
版权声明 602142