The U-Net Enhanced Graph Neural Network for Multiphase Flow Prediction: An Implication to Geological Carbon Sequestration

计算机科学 人工神经网络 固碳 图形 网(多面体) 人工智能 理论计算机科学 化学 数学 几何学 有机化学 二氧化碳
作者
Zeeshan Tariq,Hussein Hoteit,Shuyu Sun,Moataz O. Abu-Al-Saud,Xupeng He,Muhammad M. Almajid,Bicheng Yan
出处
期刊:SPE Annual Technical Conference and Exhibition 卷期号:10
标识
DOI:10.2118/220757-ms
摘要

Abstract Monitoring CO2 pressure buildup and saturation plume movement throughout the operation of Geological Carbon Sequestration (GCS) projects is crucial for ensuring environmental safety. While the movement of CO2 plumes can be predicted with high-fidelity numerical simulations, these simulations are often computationally expensive. However, through training on readily available simulation datasets, recent advancements in data-driven models have made it possible to predict CO2 movement rapidly. In this study, we adopt the U-Net Enhanced Graph Convolutional Neural Network (U-GCN) to predict the spatial and temporal evolution of CO2 plume saturation and pressure buildup in a saline aquifer reservoir. Utilizing the U-Net architecture, which incorporates skip connections, enables U-GCN to capture high-level features and fine-grained details concurrently. First, we construct physics-based numerical simulation models that account for both GCS injection and post-injection periods. By employing Latin-Hypercube sampling, we generate a diverse range of reservoir and decision parameters, resulting in a comprehensive simulation database comprising 2000 simulation cases. We train and test the U-GCN model on a two-dimensional (2D) radial model to establish a U-GCN code benchmark. We utilize Mean Squared Error as the loss function throughout the U-GCN training process. The U-GCN model demonstrates robust performance on the radial model, achieving an R2 score of 0.993 for saturation prediction and an R2 of 0.989 for pressure buildup prediction based on the blind testing dataset. Notably, the Mean Absolute Percentage Error (MAPE) for all mappings consistently hovers around less than 5%, indicating the effectiveness of the trained models in predicting the temporal and spatial evolution of CO2 gas saturation. Moreover, the prediction CPU time for the DL models is significantly lower (0.02 seconds per case) than the physics-based reservoir simulator (on average, 45 to 60 minutes per case). This underscores the capability of the proposed method to provide predictions as accurate as physics-based simulations while reducing substantial computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lily发布了新的文献求助10
刚刚
1秒前
机智小猫咪应助凉笙墨染采纳,获得10
3秒前
深情安青应助稳重向南采纳,获得10
3秒前
顺顺顺顺完成签到 ,获得积分10
3秒前
5秒前
6秒前
6秒前
6秒前
du完成签到 ,获得积分0
7秒前
思源应助whisper采纳,获得10
7秒前
7秒前
8秒前
CipherSage应助瘦瘦依白采纳,获得10
8秒前
LYF发布了新的文献求助10
10秒前
倚门回首发布了新的文献求助10
10秒前
10秒前
繁繁子发布了新的文献求助10
10秒前
茶山南发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
科目三应助铁锤采纳,获得10
13秒前
酷波er应助雪掩的往事采纳,获得10
14秒前
SYMI发布了新的文献求助10
14秒前
JingP发布了新的文献求助10
15秒前
哈哈哈发布了新的文献求助10
15秒前
思源应助SSS水鱼采纳,获得30
15秒前
情怀应助稳重向南采纳,获得10
16秒前
16秒前
17秒前
xxlbp发布了新的文献求助10
17秒前
纯爱发布了新的文献求助10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971424
求助须知:如何正确求助?哪些是违规求助? 3516157
关于积分的说明 11181063
捐赠科研通 3251297
什么是DOI,文献DOI怎么找? 1795776
邀请新用户注册赠送积分活动 876012
科研通“疑难数据库(出版商)”最低求助积分说明 805228