The U-Net Enhanced Graph Neural Network for Multiphase Flow Prediction: An Implication to Geological Carbon Sequestration

计算机科学 人工神经网络 固碳 图形 网(多面体) 人工智能 理论计算机科学 化学 数学 几何学 有机化学 二氧化碳
作者
Zeeshan Tariq,Hussein Hoteit,Shuyu Sun,Moataz O. Abu-Al-Saud,Xupeng He,Muhammad M. Almajid,Bicheng Yan
出处
期刊:SPE Annual Technical Conference and Exhibition 卷期号:10
标识
DOI:10.2118/220757-ms
摘要

Abstract Monitoring CO2 pressure buildup and saturation plume movement throughout the operation of Geological Carbon Sequestration (GCS) projects is crucial for ensuring environmental safety. While the movement of CO2 plumes can be predicted with high-fidelity numerical simulations, these simulations are often computationally expensive. However, through training on readily available simulation datasets, recent advancements in data-driven models have made it possible to predict CO2 movement rapidly. In this study, we adopt the U-Net Enhanced Graph Convolutional Neural Network (U-GCN) to predict the spatial and temporal evolution of CO2 plume saturation and pressure buildup in a saline aquifer reservoir. Utilizing the U-Net architecture, which incorporates skip connections, enables U-GCN to capture high-level features and fine-grained details concurrently. First, we construct physics-based numerical simulation models that account for both GCS injection and post-injection periods. By employing Latin-Hypercube sampling, we generate a diverse range of reservoir and decision parameters, resulting in a comprehensive simulation database comprising 2000 simulation cases. We train and test the U-GCN model on a two-dimensional (2D) radial model to establish a U-GCN code benchmark. We utilize Mean Squared Error as the loss function throughout the U-GCN training process. The U-GCN model demonstrates robust performance on the radial model, achieving an R2 score of 0.993 for saturation prediction and an R2 of 0.989 for pressure buildup prediction based on the blind testing dataset. Notably, the Mean Absolute Percentage Error (MAPE) for all mappings consistently hovers around less than 5%, indicating the effectiveness of the trained models in predicting the temporal and spatial evolution of CO2 gas saturation. Moreover, the prediction CPU time for the DL models is significantly lower (0.02 seconds per case) than the physics-based reservoir simulator (on average, 45 to 60 minutes per case). This underscores the capability of the proposed method to provide predictions as accurate as physics-based simulations while reducing substantial computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨恋凡尘完成签到,获得积分0
刚刚
羊羔肉完成签到,获得积分10
2秒前
胖丁完成签到,获得积分10
2秒前
笨笨凡松完成签到,获得积分10
5秒前
飞舞伤寒完成签到,获得积分10
5秒前
贝利亚完成签到,获得积分10
7秒前
喜多多的小眼静完成签到 ,获得积分10
7秒前
7秒前
Dsunflower完成签到 ,获得积分10
8秒前
羊羔肉发布了新的文献求助50
9秒前
半夏发布了新的文献求助10
9秒前
10秒前
10秒前
大橙子发布了新的文献求助10
11秒前
星辰大海应助贝利亚采纳,获得10
11秒前
12秒前
sunny心晴完成签到 ,获得积分10
14秒前
独特的凝云完成签到 ,获得积分10
14秒前
TheDing完成签到,获得积分10
15秒前
传奇3应助lenetivy采纳,获得10
17秒前
积极的忆曼完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
酒剑仙完成签到,获得积分10
18秒前
YANGMJ完成签到,获得积分10
19秒前
xialuoke完成签到,获得积分10
19秒前
scinature发布了新的文献求助10
20秒前
20秒前
20秒前
小洪俊熙完成签到,获得积分10
22秒前
狄百招完成签到 ,获得积分10
22秒前
UU完成签到,获得积分10
23秒前
半夏完成签到,获得积分10
25秒前
Judy完成签到 ,获得积分10
25秒前
跳跳糖完成签到,获得积分10
26秒前
JS完成签到,获得积分10
27秒前
胡萝卜完成签到,获得积分10
28秒前
Hunter完成签到,获得积分10
28秒前
耍酷依玉完成签到,获得积分10
28秒前
luo完成签到,获得积分10
29秒前
大橙子发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022