清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Coal-gangue sound recognition using hybrid multi-branch CNN based on attention mechanism fusion in noisy environments

机制(生物学) 计算机科学 融合 声音(地理) 人工智能 声学 工程类 废物管理 语言学 认识论 物理 哲学
作者
Qingjun Song,Wenchao Hao,Qinghui Song,Haiyan Jiang,Kai Li,Shirong Sun
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74308-5
摘要

The coal-gangue recognition technology plays an important role in the intelligent realization of fully mechanized caving face and the improvement of coal quality. Although great progress has been made for the coal-gangue recognition in recent years, most of them have not taken into account the impact of the complex environment of top coal caving on recognition performance. Herein, a hybrid multi-branch convolutional neural network (HMBCNN) is proposed for coal-gangue recognition, which based on improved Mel Frequency Cepstral Coefficient (MFCC) as well as Mel spectrogram, and attention mechanism. Firstly, the MFCC and its smooth feature matrix are input into each branch of one-dimensional multi-branch convolutional neural network, and the spliced features are extracted adaptively through multi-head attention mechanism. Secondly, the Mel spectrogram and its first-order derivative are input into each branch of the two-dimensional multi-branch convolutional neural network respectively, and the effective time-frequency information is paid attention to through the soft attention mechanism. Finally, at the decision-making level, the two networks are fused to establish a model for feature fusion and classification, obtaining optimal fusion strategies for different features and networks. A database of sound pressure signals under different signal-to-noise ratios and equipment operations is constructed based on a large amount of data collected in the laboratory and on-site. Comparative experiments and discussions are conducted on this database with advanced algorithms and different neural network structures. The results show that the proposed method achieves higher recognition accuracy and better robustness in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独幻桃发布了新的文献求助10
1秒前
充电宝应助孤独幻桃采纳,获得30
39秒前
紫荆完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
2分钟前
孤独幻桃完成签到,获得积分10
2分钟前
3分钟前
Z可发布了新的文献求助10
3分钟前
4分钟前
洒家完成签到 ,获得积分10
5分钟前
SciGPT应助连安阳采纳,获得10
6分钟前
6分钟前
连安阳发布了新的文献求助10
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
耍酷平凡发布了新的文献求助30
6分钟前
无悔完成签到 ,获得积分10
7分钟前
大医仁心完成签到 ,获得积分10
7分钟前
聪明的云完成签到 ,获得积分10
7分钟前
稻子完成签到 ,获得积分10
8分钟前
dinglingling完成签到 ,获得积分10
8分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
8分钟前
CHEN完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
Arthur Zhu完成签到,获得积分10
9分钟前
9分钟前
10分钟前
10分钟前
10分钟前
10分钟前
熊猫胖胖WITH超人完成签到,获得积分20
10分钟前
11分钟前
耍酷平凡发布了新的文献求助10
11分钟前
11分钟前
ewxf2001发布了新的文献求助10
11分钟前
11分钟前
花园里的蒜完成签到 ,获得积分0
11分钟前
荔枝发布了新的文献求助20
11分钟前
ewxf2001完成签到,获得积分10
11分钟前
juan完成签到 ,获得积分10
11分钟前
cxwcn完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108