Coal-gangue sound recognition using hybrid multi-branch CNN based on attention mechanism fusion in noisy environments

机制(生物学) 计算机科学 融合 声音(地理) 人工智能 声学 工程类 废物管理 语言学 认识论 物理 哲学
作者
Qingjun Song,Wenchao Hao,Qinghui Song,Haiyan Jiang,Kai Li,Shirong Sun
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74308-5
摘要

The coal-gangue recognition technology plays an important role in the intelligent realization of fully mechanized caving face and the improvement of coal quality. Although great progress has been made for the coal-gangue recognition in recent years, most of them have not taken into account the impact of the complex environment of top coal caving on recognition performance. Herein, a hybrid multi-branch convolutional neural network (HMBCNN) is proposed for coal-gangue recognition, which based on improved Mel Frequency Cepstral Coefficient (MFCC) as well as Mel spectrogram, and attention mechanism. Firstly, the MFCC and its smooth feature matrix are input into each branch of one-dimensional multi-branch convolutional neural network, and the spliced features are extracted adaptively through multi-head attention mechanism. Secondly, the Mel spectrogram and its first-order derivative are input into each branch of the two-dimensional multi-branch convolutional neural network respectively, and the effective time-frequency information is paid attention to through the soft attention mechanism. Finally, at the decision-making level, the two networks are fused to establish a model for feature fusion and classification, obtaining optimal fusion strategies for different features and networks. A database of sound pressure signals under different signal-to-noise ratios and equipment operations is constructed based on a large amount of data collected in the laboratory and on-site. Comparative experiments and discussions are conducted on this database with advanced algorithms and different neural network structures. The results show that the proposed method achieves higher recognition accuracy and better robustness in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦十七应助6666采纳,获得10
1秒前
福娃发布了新的文献求助30
3秒前
momo发布了新的文献求助10
3秒前
dahong完成签到 ,获得积分10
4秒前
4秒前
4秒前
course完成签到,获得积分10
5秒前
Bruial发布了新的文献求助30
5秒前
5秒前
56jhjl完成签到,获得积分10
8秒前
圈圈发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI6应助芹菜不甜采纳,获得10
10秒前
缓慢的冰巧完成签到,获得积分10
10秒前
墨染清风凉完成签到,获得积分10
11秒前
Shawn完成签到,获得积分10
11秒前
含蓄的三颜完成签到,获得积分10
11秒前
肚子藤完成签到,获得积分10
12秒前
方勇飞完成签到,获得积分10
12秒前
刘雨森发布了新的文献求助10
12秒前
科研通AI6应助xuqian820101采纳,获得10
12秒前
dyan完成签到,获得积分10
14秒前
洛子夜完成签到,获得积分10
15秒前
16秒前
dyan发布了新的文献求助10
16秒前
情怀应助Bruial采纳,获得30
17秒前
17秒前
浮游应助动如脱兔采纳,获得10
18秒前
核桃发布了新的文献求助30
21秒前
22秒前
王铭轩发布了新的文献求助30
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得30
23秒前
ding应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得30
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360152
求助须知:如何正确求助?哪些是违规求助? 4490883
关于积分的说明 13980459
捐赠科研通 4393370
什么是DOI,文献DOI怎么找? 2413422
邀请新用户注册赠送积分活动 1406254
关于科研通互助平台的介绍 1380672