Coal-gangue sound recognition using hybrid multi-branch CNN based on attention mechanism fusion in noisy environments

机制(生物学) 计算机科学 融合 声音(地理) 人工智能 声学 工程类 废物管理 哲学 语言学 物理 认识论
作者
Qingjun Song,Wenchao Hao,Qinghui Song,Haiyan Jiang,Kai Li,Shirong Sun
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74308-5
摘要

The coal-gangue recognition technology plays an important role in the intelligent realization of fully mechanized caving face and the improvement of coal quality. Although great progress has been made for the coal-gangue recognition in recent years, most of them have not taken into account the impact of the complex environment of top coal caving on recognition performance. Herein, a hybrid multi-branch convolutional neural network (HMBCNN) is proposed for coal-gangue recognition, which based on improved Mel Frequency Cepstral Coefficient (MFCC) as well as Mel spectrogram, and attention mechanism. Firstly, the MFCC and its smooth feature matrix are input into each branch of one-dimensional multi-branch convolutional neural network, and the spliced features are extracted adaptively through multi-head attention mechanism. Secondly, the Mel spectrogram and its first-order derivative are input into each branch of the two-dimensional multi-branch convolutional neural network respectively, and the effective time-frequency information is paid attention to through the soft attention mechanism. Finally, at the decision-making level, the two networks are fused to establish a model for feature fusion and classification, obtaining optimal fusion strategies for different features and networks. A database of sound pressure signals under different signal-to-noise ratios and equipment operations is constructed based on a large amount of data collected in the laboratory and on-site. Comparative experiments and discussions are conducted on this database with advanced algorithms and different neural network structures. The results show that the proposed method achieves higher recognition accuracy and better robustness in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的剑心完成签到 ,获得积分10
1秒前
小小乖发布了新的文献求助10
1秒前
10Shi完成签到 ,获得积分10
2秒前
月亮发布了新的文献求助10
2秒前
4秒前
5秒前
你不知道完成签到 ,获得积分10
5秒前
Persistence完成签到,获得积分10
6秒前
7秒前
自觉采枫完成签到,获得积分10
7秒前
英俊的铭应助小小乖采纳,获得10
10秒前
10秒前
研友_r8YKvn完成签到,获得积分10
10秒前
天天快乐应助zheshi1采纳,获得10
11秒前
Persistence发布了新的文献求助10
12秒前
14秒前
14秒前
诚心的黑猫完成签到,获得积分10
14秒前
尔东二三发布了新的文献求助30
14秒前
15秒前
orixero应助如意的白筠采纳,获得100
15秒前
直率的冰海完成签到,获得积分10
15秒前
15秒前
852应助唐帅采纳,获得10
16秒前
18秒前
Vicky完成签到,获得积分10
18秒前
思源应助别喝他的酒采纳,获得10
18秒前
素的素的发布了新的文献求助10
19秒前
20秒前
20秒前
彭于晏应助Jello采纳,获得10
21秒前
21秒前
22秒前
22秒前
gqb完成签到,获得积分10
24秒前
ZY发布了新的文献求助10
24秒前
谭文完成签到 ,获得积分10
24秒前
25秒前
情怀应助Nito采纳,获得10
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288984
求助须知:如何正确求助?哪些是违规求助? 2926181
关于积分的说明 8425836
捐赠科研通 2597260
什么是DOI,文献DOI怎么找? 1417165
科研通“疑难数据库(出版商)”最低求助积分说明 659592
邀请新用户注册赠送积分活动 642019