Coal-gangue sound recognition using hybrid multi-branch CNN based on attention mechanism fusion in noisy environments

机制(生物学) 计算机科学 融合 声音(地理) 人工智能 声学 工程类 废物管理 哲学 语言学 物理 认识论
作者
Qingjun Song,Wenchao Hao,Qinghui Song,Haiyan Jiang,Kai Li,Shirong Sun
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74308-5
摘要

The coal-gangue recognition technology plays an important role in the intelligent realization of fully mechanized caving face and the improvement of coal quality. Although great progress has been made for the coal-gangue recognition in recent years, most of them have not taken into account the impact of the complex environment of top coal caving on recognition performance. Herein, a hybrid multi-branch convolutional neural network (HMBCNN) is proposed for coal-gangue recognition, which based on improved Mel Frequency Cepstral Coefficient (MFCC) as well as Mel spectrogram, and attention mechanism. Firstly, the MFCC and its smooth feature matrix are input into each branch of one-dimensional multi-branch convolutional neural network, and the spliced features are extracted adaptively through multi-head attention mechanism. Secondly, the Mel spectrogram and its first-order derivative are input into each branch of the two-dimensional multi-branch convolutional neural network respectively, and the effective time-frequency information is paid attention to through the soft attention mechanism. Finally, at the decision-making level, the two networks are fused to establish a model for feature fusion and classification, obtaining optimal fusion strategies for different features and networks. A database of sound pressure signals under different signal-to-noise ratios and equipment operations is constructed based on a large amount of data collected in the laboratory and on-site. Comparative experiments and discussions are conducted on this database with advanced algorithms and different neural network structures. The results show that the proposed method achieves higher recognition accuracy and better robustness in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁曼雁完成签到 ,获得积分10
2秒前
TRY关闭了TRY文献求助
2秒前
小张在努力完成签到 ,获得积分10
3秒前
搜集达人应助悄悄采纳,获得10
3秒前
研友_VZG7GZ应助xr采纳,获得10
3秒前
4秒前
ss13l完成签到,获得积分10
4秒前
5秒前
5秒前
崔崔发布了新的文献求助10
8秒前
渊思发布了新的文献求助10
9秒前
14秒前
小新同学完成签到,获得积分10
15秒前
昏睡的咖啡完成签到,获得积分10
15秒前
努力打个共完成签到,获得积分10
15秒前
无花果应助王鹏飞采纳,获得10
18秒前
化龙完成签到,获得积分10
18秒前
崔崔完成签到,获得积分10
19秒前
dali完成签到,获得积分10
23秒前
陈一完成签到 ,获得积分10
29秒前
募股小完成签到,获得积分10
33秒前
35秒前
大强完成签到,获得积分10
35秒前
36秒前
哈罗完成签到,获得积分10
38秒前
WMT完成签到 ,获得积分10
39秒前
N型半导体发布了新的文献求助10
40秒前
42秒前
42秒前
情怀应助N型半导体采纳,获得10
44秒前
Alex应助积极的初南采纳,获得20
44秒前
47秒前
47秒前
47秒前
xr发布了新的文献求助10
51秒前
传奇3应助科研进化中采纳,获得10
51秒前
55秒前
小马甲应助xr采纳,获得10
55秒前
wutong完成签到,获得积分10
55秒前
科研通AI2S应助zorofu5采纳,获得10
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343