Coal-gangue sound recognition using hybrid multi-branch CNN based on attention mechanism fusion in noisy environments

机制(生物学) 计算机科学 融合 声音(地理) 人工智能 声学 工程类 废物管理 哲学 语言学 物理 认识论
作者
Qingjun Song,Wenchao Hao,Qinghui Song,Haiyan Jiang,Kai Li,Shirong Sun
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74308-5
摘要

The coal-gangue recognition technology plays an important role in the intelligent realization of fully mechanized caving face and the improvement of coal quality. Although great progress has been made for the coal-gangue recognition in recent years, most of them have not taken into account the impact of the complex environment of top coal caving on recognition performance. Herein, a hybrid multi-branch convolutional neural network (HMBCNN) is proposed for coal-gangue recognition, which based on improved Mel Frequency Cepstral Coefficient (MFCC) as well as Mel spectrogram, and attention mechanism. Firstly, the MFCC and its smooth feature matrix are input into each branch of one-dimensional multi-branch convolutional neural network, and the spliced features are extracted adaptively through multi-head attention mechanism. Secondly, the Mel spectrogram and its first-order derivative are input into each branch of the two-dimensional multi-branch convolutional neural network respectively, and the effective time-frequency information is paid attention to through the soft attention mechanism. Finally, at the decision-making level, the two networks are fused to establish a model for feature fusion and classification, obtaining optimal fusion strategies for different features and networks. A database of sound pressure signals under different signal-to-noise ratios and equipment operations is constructed based on a large amount of data collected in the laboratory and on-site. Comparative experiments and discussions are conducted on this database with advanced algorithms and different neural network structures. The results show that the proposed method achieves higher recognition accuracy and better robustness in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助光亮的念珍采纳,获得30
2秒前
英吉利25发布了新的文献求助10
2秒前
南城忆潇湘完成签到,获得积分10
2秒前
4秒前
所所应助Irene采纳,获得10
4秒前
wuwu完成签到,获得积分10
6秒前
雾醉舟完成签到,获得积分10
6秒前
花生糕完成签到,获得积分10
7秒前
小白鸽完成签到,获得积分10
7秒前
机灵纸鹤完成签到 ,获得积分10
7秒前
lake完成签到,获得积分10
7秒前
Hello应助受伤的安雁采纳,获得30
7秒前
Evan123完成签到,获得积分10
8秒前
闫什应助Flz采纳,获得10
8秒前
8秒前
xiaorui完成签到,获得积分10
8秒前
尊敬的寄松完成签到 ,获得积分10
10秒前
11秒前
云深不知处完成签到,获得积分10
11秒前
老迟到的小松鼠完成签到,获得积分10
12秒前
勤恳镜子完成签到,获得积分10
13秒前
开心的若烟完成签到,获得积分10
14秒前
爱上多hi完成签到,获得积分10
14秒前
ll发布了新的文献求助10
17秒前
17秒前
笨笨梦寒关注了科研通微信公众号
17秒前
MM完成签到,获得积分10
18秒前
煲煲煲仔饭完成签到 ,获得积分10
18秒前
煲煲煲仔饭完成签到 ,获得积分10
18秒前
火羊宝完成签到 ,获得积分10
18秒前
455完成签到,获得积分10
20秒前
cis2014完成签到,获得积分10
20秒前
嘻嘻完成签到,获得积分10
21秒前
athena完成签到,获得积分10
21秒前
十七完成签到 ,获得积分10
22秒前
Zz完成签到,获得积分10
22秒前
清淮完成签到 ,获得积分10
22秒前
小新小新发布了新的文献求助10
23秒前
amault完成签到,获得积分10
24秒前
马小燕完成签到,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695