已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Coal-gangue sound recognition using hybrid multi-branch CNN based on attention mechanism fusion in noisy environments

机制(生物学) 计算机科学 融合 声音(地理) 人工智能 声学 工程类 废物管理 语言学 认识论 物理 哲学
作者
Qingjun Song,Wenchao Hao,Qinghui Song,Haiyan Jiang,Kai Li,Shirong Sun
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74308-5
摘要

The coal-gangue recognition technology plays an important role in the intelligent realization of fully mechanized caving face and the improvement of coal quality. Although great progress has been made for the coal-gangue recognition in recent years, most of them have not taken into account the impact of the complex environment of top coal caving on recognition performance. Herein, a hybrid multi-branch convolutional neural network (HMBCNN) is proposed for coal-gangue recognition, which based on improved Mel Frequency Cepstral Coefficient (MFCC) as well as Mel spectrogram, and attention mechanism. Firstly, the MFCC and its smooth feature matrix are input into each branch of one-dimensional multi-branch convolutional neural network, and the spliced features are extracted adaptively through multi-head attention mechanism. Secondly, the Mel spectrogram and its first-order derivative are input into each branch of the two-dimensional multi-branch convolutional neural network respectively, and the effective time-frequency information is paid attention to through the soft attention mechanism. Finally, at the decision-making level, the two networks are fused to establish a model for feature fusion and classification, obtaining optimal fusion strategies for different features and networks. A database of sound pressure signals under different signal-to-noise ratios and equipment operations is constructed based on a large amount of data collected in the laboratory and on-site. Comparative experiments and discussions are conducted on this database with advanced algorithms and different neural network structures. The results show that the proposed method achieves higher recognition accuracy and better robustness in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助Wangyidi采纳,获得10
1秒前
2秒前
4秒前
4秒前
Sylvia完成签到 ,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
不配.应助科研通管家采纳,获得60
6秒前
Ava应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
远方发布了新的文献求助10
6秒前
桐桐应助辛勤的志泽采纳,获得10
6秒前
徐昊楠发布了新的文献求助10
7秒前
8秒前
浮游应助yk采纳,获得10
8秒前
张小尤发布了新的文献求助10
9秒前
慕青应助白雅颂采纳,获得10
9秒前
ahnkay发布了新的文献求助10
10秒前
SppikeFPS发布了新的文献求助10
10秒前
11秒前
zhang完成签到 ,获得积分10
11秒前
虚幻的梦桃完成签到,获得积分10
12秒前
山复尔尔完成签到,获得积分10
12秒前
烟花应助WZ采纳,获得10
12秒前
NH333发布了新的文献求助10
13秒前
大个应助肥欣采纳,获得10
14秒前
CodeCraft应助fenghy采纳,获得10
14秒前
15秒前
吧哒吧哒完成签到,获得积分10
17秒前
17秒前
小天小天发布了新的文献求助10
18秒前
gladuhere发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943657
求助须知:如何正确求助?哪些是违规求助? 4208947
关于积分的说明 13084244
捐赠科研通 3988330
什么是DOI,文献DOI怎么找? 2183567
邀请新用户注册赠送积分活动 1199094
关于科研通互助平台的介绍 1111805