亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling two-phase flows with complicated interface evolution using parallel physics-informed neural networks

物理 人工神经网络 接口(物质) 统计物理学 两相流 相(物质) 经典力学 计算科学 机械 流量(数学) 人工智能 量子力学 计算机科学 最大气泡压力法 气泡
作者
Rundi Qiu,Haosen Dong,Jingzhu Wang,Chun Fan,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:8
标识
DOI:10.1063/5.0216609
摘要

The physics-informed neural networks (PINNs) have shown great potential in solving a variety of high-dimensional partial differential equations (PDEs), but the complexity of a realistic problem still restricts the practical application of the PINNs for solving most complicated PDEs. In this paper, we propose a parallel framework for PINNs that is capable of modeling two-phase flows with complicated interface evolution. The proposed framework divides the problem into several simplified subproblems and solves them through training several PINNs on corresponding subdomains simultaneously. To enhance the accuracy of the parallel training framework in two-phase flow, the overlapping domain decomposition method is adopted. The optimal subnetwork sizes and partitioned method are systematically discussed, and a series of cases including a bubble rising, droplet splashing, and the Rayleigh–Taylor instability are applied for quantitative validation. The maximum relative error of quantitative values in these cases is 0.1319. Our results show that the proposed framework not only can accelerate the training procedure of PINNs, but also can capture the spatiotemporal evolution of the interface between various phases. This framework overcomes the difficulties of training PINNs to solve a forward problem in two-phase flow, and it is expected to model more realistic dynamic systems in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
6秒前
多乐多发布了新的文献求助10
8秒前
OSASACB完成签到 ,获得积分10
9秒前
10秒前
英姑应助多乐多采纳,获得10
19秒前
21秒前
48秒前
54秒前
SUNny发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
juan发布了新的文献求助10
1分钟前
juan完成签到,获得积分10
1分钟前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
可爱的函函应助Huck采纳,获得10
2分钟前
2分钟前
2分钟前
Huck发布了新的文献求助10
2分钟前
斯文渊思发布了新的文献求助10
2分钟前
2分钟前
遥感小虫发布了新的文献求助10
2分钟前
斯文渊思完成签到,获得积分10
2分钟前
遥感小虫发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491