Modeling two-phase flows with complicated interface evolution using parallel physics-informed neural networks

物理 人工神经网络 接口(物质) 统计物理学 两相流 相(物质) 经典力学 计算科学 机械 流量(数学) 人工智能 量子力学 气泡 最大气泡压力法 计算机科学
作者
Rundi Qiu,Haosen Dong,Jingzhu Wang,Chun Fan,Yiwei Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0216609
摘要

The physics-informed neural networks (PINNs) have shown great potential in solving a variety of high-dimensional partial differential equations (PDEs), but the complexity of a realistic problem still restricts the practical application of the PINNs for solving most complicated PDEs. In this paper, we propose a parallel framework for PINNs that is capable of modeling two-phase flows with complicated interface evolution. The proposed framework divides the problem into several simplified subproblems and solves them through training several PINNs on corresponding subdomains simultaneously. To enhance the accuracy of the parallel training framework in two-phase flow, the overlapping domain decomposition method is adopted. The optimal subnetwork sizes and partitioned method are systematically discussed, and a series of cases including a bubble rising, droplet splashing, and the Rayleigh–Taylor instability are applied for quantitative validation. The maximum relative error of quantitative values in these cases is 0.1319. Our results show that the proposed framework not only can accelerate the training procedure of PINNs, but also can capture the spatiotemporal evolution of the interface between various phases. This framework overcomes the difficulties of training PINNs to solve a forward problem in two-phase flow, and it is expected to model more realistic dynamic systems in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助wualexandra采纳,获得10
刚刚
刚刚
kmo关闭了kmo文献求助
刚刚
菜菜发布了新的文献求助10
刚刚
wjx发布了新的文献求助10
1秒前
111发布了新的文献求助10
2秒前
fanfan完成签到,获得积分10
2秒前
丰富幻悲发布了新的文献求助10
2秒前
wjx发布了新的文献求助20
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助30
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助20
3秒前
驴驴的自我修养完成签到,获得积分10
3秒前
3秒前
笑笑完成签到 ,获得积分10
3秒前
木木木完成签到,获得积分10
4秒前
研友_VZG7GZ应助shilong.yang采纳,获得10
4秒前
充电宝应助shilong.yang采纳,获得10
4秒前
彭于晏应助shilong.yang采纳,获得10
4秒前
大模型应助微眠采纳,获得10
4秒前
shawn发布了新的文献求助20
5秒前
fanfan发布了新的文献求助10
6秒前
木木木发布了新的文献求助10
7秒前
8秒前
JC完成签到,获得积分10
8秒前
YifanWang应助愤怒的小鸽子采纳,获得10
8秒前
小木木壮发布了新的文献求助10
10秒前
Water应助wjx采纳,获得10
10秒前
bxyyy应助wjx采纳,获得10
10秒前
斯文败类应助wjx采纳,获得10
11秒前
在水一方应助wjx采纳,获得20
11秒前
善良的剑通应助wjx采纳,获得10
11秒前
英俊的铭应助wjx采纳,获得10
11秒前
七月应助wjx采纳,获得10
11秒前
丘比特应助wjx采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821