Classification of soybean seeds based on RGB reconstruction of hyperspectral images

高光谱成像 RGB颜色模型 人工智能 模式识别(心理学) 播种 计算机科学 数学 分割 农学 生物
作者
Yang Xu,Kejia Ma,Dejia Zhang,Shaozhong Song,Xiaofeng An
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (9): e0307329-e0307329
标识
DOI:10.1371/journal.pone.0307329
摘要

Soyabean is an incredibly significant component of Chinese agricultural product, and categorizing soyabean seeds allows for a better understanding of the features, attributes, and applications of many species of soyabean. This enables farmers to choose appropriate seeds for sowing in order to increase production and quality. As a result, this thesis provides a method for classifying soybean seeds that uses hyperspectral RGB picture reconstruction. Firstly, hyperspectral images of seven varieties of soybean, H1, H2, H3, H4, H5, H6 and H7, were collected by hyperspectral imager, and by using the principle of the three base colours, the R, G and B bands which have more characteristic information are selected to reconstruct the images with different texture and colour characteristics to generate a new dataset for seed segmentation, and finally, a comparison is made with the classification effect of the seven models. The experimental results in ResNet34 show that the classification accuracy of the dataset before and after RGB reconstruction increases from 88.87% to 91.75%, demonstrating that RGB image reconstruction can strengthen image features; ResNet18, ResNet34, ResNet50, ResNet101, CBAM-ResNet34, SENet-ResNet34, and SENet-ResNet34-DCN models have classification accuracies of 72.25%, 91.75%, 89%, 88.48%, 92.28%, 92.80%, and 94.24%, respectively.SENet-ResNet34-DCN achieves the greatest classification accuracy results, with a model loss of roughly 0.3. The proposed SENet-ResNet34-DCN model is the most effective at classifying soybean seeds. By classifying and optimally selecting seed varieties, agricultural production can become more scientific, efficient, and sustainable, resulting in higher returns for farmers and contributing to global food security and sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
瓜瓜乐发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
乐观大开发布了新的文献求助10
1秒前
2秒前
yolo发布了新的文献求助10
3秒前
4秒前
luwanqing关注了科研通微信公众号
5秒前
5秒前
xiao发布了新的文献求助20
5秒前
llalluan完成签到,获得积分10
5秒前
陆宇发布了新的文献求助10
5秒前
zzz完成签到,获得积分10
6秒前
贪玩香芦发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
汉堡包应助乌拉娜娜采纳,获得10
8秒前
9秒前
llalluan发布了新的文献求助50
9秒前
松鼠完成签到 ,获得积分10
9秒前
108发布了新的文献求助10
10秒前
10秒前
阿大撒2完成签到,获得积分10
11秒前
long发布了新的文献求助10
11秒前
11秒前
11秒前
KatyPerry发布了新的文献求助10
12秒前
12秒前
刘晏均完成签到,获得积分20
12秒前
sun发布了新的文献求助10
12秒前
VVV完成签到 ,获得积分10
12秒前
茶博士发布了新的文献求助10
13秒前
13秒前
13秒前
阿大撒2发布了新的文献求助10
13秒前
SciGPT应助登登采纳,获得10
14秒前
陆宇完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157277
求助须知:如何正确求助?哪些是违规求助? 2808570
关于积分的说明 7877973
捐赠科研通 2467049
什么是DOI,文献DOI怎么找? 1313150
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919