已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Health State Assessment Model for Complex Systems: Trade-off Accuracy and Robustness in Belief Rule Base

稳健性(进化) 计算机科学 基础(拓扑) 国家(计算机科学) 基于规则的系统 数据挖掘 人工智能 机器学习 算法 数学 数学分析 生物化学 化学 基因
作者
Mingyuan Liu,Wei He,You Cao,Shaohua Li,Hailong Zhu,Ning Ma
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:166: 112189-112189
标识
DOI:10.1016/j.asoc.2024.112189
摘要

In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
William鉴哲完成签到,获得积分10
3秒前
三泥完成签到,获得积分10
5秒前
7秒前
871624521完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
wop111应助tuanheqi采纳,获得20
15秒前
luan完成签到 ,获得积分10
16秒前
火星上的飞槐完成签到,获得积分10
18秒前
领导范儿应助马儿咯咯哒采纳,获得10
18秒前
俏皮含双完成签到,获得积分10
20秒前
22秒前
拉长的灵安完成签到 ,获得积分10
23秒前
动听的秋白完成签到 ,获得积分10
24秒前
优秀的张四月完成签到,获得积分10
25秒前
29秒前
29秒前
橙色小瓶子完成签到,获得积分10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
Mufreh应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得50
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
30秒前
32秒前
37秒前
诚心的访蕊完成签到 ,获得积分10
39秒前
VX发布了新的文献求助30
41秒前
Moonpie应助老北京采纳,获得10
42秒前
熊博士完成签到,获得积分10
44秒前
46秒前
47秒前
yao完成签到,获得积分10
48秒前
123完成签到 ,获得积分10
48秒前
陈睿完成签到,获得积分10
51秒前
51秒前
yao发布了新的文献求助10
53秒前
老北京完成签到,获得积分10
55秒前
阿星完成签到,获得积分10
56秒前
汉堡包应助kun采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731434
求助须知:如何正确求助?哪些是违规求助? 5330471
关于积分的说明 15320989
捐赠科研通 4877485
什么是DOI,文献DOI怎么找? 2620351
邀请新用户注册赠送积分活动 1569604
关于科研通互助平台的介绍 1526113