Health State Assessment Model for Complex Systems: Trade-off Accuracy and Robustness in Belief Rule Base

稳健性(进化) 计算机科学 基础(拓扑) 国家(计算机科学) 基于规则的系统 数据挖掘 人工智能 机器学习 算法 数学 数学分析 生物化学 化学 基因
作者
Mingyuan Liu,Wei He,You Cao,Shaohua Li,Hailong Zhu,Ning Ma
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:166: 112189-112189
标识
DOI:10.1016/j.asoc.2024.112189
摘要

In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qc发布了新的文献求助10
1秒前
木沐发布了新的文献求助10
1秒前
Limerencia发布了新的文献求助200
3秒前
勤奋的白桃完成签到,获得积分10
3秒前
5秒前
Jaden发布了新的文献求助10
5秒前
wyy发布了新的文献求助10
6秒前
8秒前
田様应助传说奢华采纳,获得10
8秒前
9秒前
10秒前
大大发布了新的文献求助10
10秒前
BowieHuang应助zz采纳,获得10
10秒前
小七完成签到,获得积分20
10秒前
蓝天应助hechao101010采纳,获得10
10秒前
Criminology34应助镜中人采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
皮汶灵完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
宁静致远发布了新的文献求助10
12秒前
Owen应助小七采纳,获得20
13秒前
13秒前
yuyuyu完成签到,获得积分10
14秒前
rrrrrrry发布了新的文献求助10
16秒前
16秒前
夜枫发布了新的文献求助10
16秒前
桐桐应助cqz采纳,获得10
17秒前
yuyuyu发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
20秒前
李健的小迷弟应助yyy采纳,获得10
21秒前
22秒前
wyy完成签到 ,获得积分10
23秒前
哈哈哈哈发布了新的文献求助10
24秒前
李怼怼发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548