Health State Assessment Model for Complex Systems: Trade-off Accuracy and Robustness in Belief Rule Base

稳健性(进化) 计算机科学 基础(拓扑) 国家(计算机科学) 基于规则的系统 数据挖掘 人工智能 机器学习 算法 数学 数学分析 生物化学 化学 基因
作者
Mingyuan Liu,Wei He,You Cao,Shaohua Li,Hailong Zhu,Ning Ma
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:166: 112189-112189
标识
DOI:10.1016/j.asoc.2024.112189
摘要

In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助高贵路灯采纳,获得10
刚刚
Aten完成签到,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
明理楷瑞完成签到,获得积分10
刚刚
云舒应助科研通管家采纳,获得40
刚刚
SYLH应助科研通管家采纳,获得20
刚刚
思源应助科研通管家采纳,获得50
刚刚
Linda完成签到 ,获得积分10
刚刚
SYLH应助科研通管家采纳,获得20
1秒前
英姑应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
wisdom应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
64658应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
酷炫翠桃应助科研通管家采纳,获得10
1秒前
雷雨泽石完成签到,获得积分10
1秒前
1秒前
1秒前
Bonnie完成签到 ,获得积分20
2秒前
海风发布了新的文献求助10
2秒前
3秒前
燃燃完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
。。。完成签到,获得积分10
4秒前
奥特超曼应助ark861023采纳,获得10
4秒前
AAA电池批发顾总完成签到,获得积分10
6秒前
clocksoar完成签到,获得积分10
6秒前
jojodan完成签到,获得积分10
6秒前
3366完成签到,获得积分10
6秒前
6秒前
7秒前
沧海应助Aten采纳,获得10
7秒前
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582