Health State Assessment Model for Complex Systems: Trade-off Accuracy and Robustness in Belief Rule Base

稳健性(进化) 计算机科学 基础(拓扑) 国家(计算机科学) 基于规则的系统 数据挖掘 人工智能 机器学习 算法 数学 数学分析 生物化学 化学 基因
作者
Mingyuan Liu,Wei He,You Cao,Shaohua Li,Hailong Zhu,Ning Ma
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:166: 112189-112189
标识
DOI:10.1016/j.asoc.2024.112189
摘要

In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Maigret完成签到,获得积分10
1秒前
两飞飞完成签到,获得积分10
1秒前
1秒前
韭菜盒子发布了新的文献求助10
2秒前
ximu完成签到,获得积分20
2秒前
CLN完成签到,获得积分10
2秒前
SciGPT应助单薄凌蝶采纳,获得50
3秒前
3秒前
111完成签到,获得积分10
3秒前
小马甲应助117采纳,获得10
3秒前
甜甜的猫咪完成签到,获得积分10
3秒前
3秒前
66应助马佳凯采纳,获得10
3秒前
4秒前
是述不是沭完成签到,获得积分10
4秒前
5秒前
lei完成签到,获得积分10
5秒前
瘦瘦的背包完成签到,获得积分10
6秒前
6秒前
赘婿应助Elaine采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
科研小白完成签到,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得50
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
控制小弟应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740