PhosBERT: A self-supervised learning model for identifying phosphorylation sites in SARS-CoV-2-infected human cells

磷酸化 计算生物学 蛋白质磷酸化 丝氨酸 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019年冠状病毒病(COVID-19) 生物 生物信息学 人工智能 计算机科学 医学 传染病(医学专业) 疾病 生物化学 蛋白激酶A 病理
作者
Yong Li,Ru Gao,Shan Liu,Hongqi Zhang,Hao Lv,Hongyan Lai
出处
期刊:Methods [Elsevier BV]
卷期号:230: 140-146
标识
DOI:10.1016/j.ymeth.2024.08.004
摘要

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus, which mainly causes respiratory and enteric diseases and is responsible for the outbreak of coronavirus disease 19 (COVID-19). Numerous studies have demonstrated that SARS-CoV-2 infection will lead to a significant dysregulation of protein post-translational modification profile in human cells. The accurate recognition of phosphorylation sites in host cells will contribute to a deep understanding of the pathogenic mechanisms of SARS-CoV-2 and also help to screen drugs and compounds with antiviral potential. Therefore, there is a need to develop cost-effective and high-precision computational strategies for specifically identifying SARS-CoV-2-infected phosphorylation sites. In this work, we first implemented a custom neural network model (named PhosBERT) on the basis of a pre-trained protein language model of ProtBert, which was a self-supervised learning approach developed on the Bidirectional Encoder Representation from Transformers (BERT) architecture. PhosBERT was then trained and validated on serine (S) and threonine (T) phosphorylation dataset and tyrosine (Y) phosphorylation dataset with 5-fold cross-validation, respectively. Independent validation results showed that PhosBERT could identify S/T phosphorylation sites with high accuracy and AUC (area under the receiver operating characteristic) value of 81.9% and 0.896. The prediction accuracy and AUC value of Y phosphorylation sites reached up to 87.1% and 0.902. It indicated that the proposed model was of good prediction ability and stability and would provide a new approach for studying SARS-CoV-2 phosphorylation sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stern完成签到,获得积分10
刚刚
科研小白发布了新的文献求助10
1秒前
飞速get完成签到 ,获得积分10
1秒前
2秒前
沉默的婴完成签到 ,获得积分10
3秒前
传奇3应助馒头酶采纳,获得10
3秒前
3秒前
3秒前
4秒前
今后应助qsxy采纳,获得10
4秒前
英俊的铭应助jing2000yr采纳,获得10
4秒前
Logan发布了新的文献求助10
4秒前
ze完成签到,获得积分10
4秒前
4秒前
4秒前
打工人完成签到,获得积分20
5秒前
5秒前
波特卡斯D艾斯完成签到 ,获得积分10
5秒前
6秒前
AoAoo发布了新的文献求助10
6秒前
荣一完成签到,获得积分10
6秒前
hu发布了新的文献求助10
6秒前
謓言完成签到,获得积分10
6秒前
时闲完成签到,获得积分10
6秒前
6秒前
6秒前
zho发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
LONG完成签到 ,获得积分10
7秒前
7秒前
友好的难敌完成签到,获得积分10
8秒前
皮汤汤发布了新的文献求助10
8秒前
乐观依云发布了新的文献求助10
9秒前
牛油果发布了新的文献求助10
9秒前
JamesPei应助失眠的雅琴采纳,获得10
9秒前
幸福大白发布了新的文献求助10
9秒前
9秒前
科研小白完成签到,获得积分10
10秒前
謓言发布了新的文献求助10
10秒前
ZAL完成签到,获得积分10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128