PhosBERT: A self-supervised learning model for identifying phosphorylation sites in SARS-CoV-2-infected human cells

磷酸化 计算生物学 蛋白质磷酸化 丝氨酸 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019年冠状病毒病(COVID-19) 生物 生物信息学 人工智能 计算机科学 医学 传染病(医学专业) 疾病 生物化学 蛋白激酶A 病理
作者
Yong Li,Ru Gao,Shan Liu,Hongqi Zhang,Hao Lv,Hongyan Lai
出处
期刊:Methods [Elsevier BV]
卷期号:230: 140-146 被引量:4
标识
DOI:10.1016/j.ymeth.2024.08.004
摘要

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus, which mainly causes respiratory and enteric diseases and is responsible for the outbreak of coronavirus disease 19 (COVID-19). Numerous studies have demonstrated that SARS-CoV-2 infection will lead to a significant dysregulation of protein post-translational modification profile in human cells. The accurate recognition of phosphorylation sites in host cells will contribute to a deep understanding of the pathogenic mechanisms of SARS-CoV-2 and also help to screen drugs and compounds with antiviral potential. Therefore, there is a need to develop cost-effective and high-precision computational strategies for specifically identifying SARS-CoV-2-infected phosphorylation sites. In this work, we first implemented a custom neural network model (named PhosBERT) on the basis of a pre-trained protein language model of ProtBert, which was a self-supervised learning approach developed on the Bidirectional Encoder Representation from Transformers (BERT) architecture. PhosBERT was then trained and validated on serine (S) and threonine (T) phosphorylation dataset and tyrosine (Y) phosphorylation dataset with 5-fold cross-validation, respectively. Independent validation results showed that PhosBERT could identify S/T phosphorylation sites with high accuracy and AUC (area under the receiver operating characteristic) value of 81.9% and 0.896. The prediction accuracy and AUC value of Y phosphorylation sites reached up to 87.1% and 0.902. It indicated that the proposed model was of good prediction ability and stability and would provide a new approach for studying SARS-CoV-2 phosphorylation sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki0808完成签到 ,获得积分10
刚刚
Lio完成签到,获得积分10
1秒前
1秒前
阿龙发布了新的文献求助10
1秒前
1秒前
Dandanhuang发布了新的文献求助10
2秒前
lili发布了新的文献求助10
3秒前
杨子怡完成签到 ,获得积分10
4秒前
为十完成签到,获得积分10
5秒前
Leon Lai完成签到,获得积分0
5秒前
Aries完成签到,获得积分10
6秒前
6秒前
6秒前
金碧河发布了新的文献求助10
7秒前
冷艳馒头完成签到,获得积分10
7秒前
科研丁真完成签到,获得积分10
9秒前
LEE123完成签到,获得积分10
9秒前
默默善愁完成签到,获得积分10
10秒前
10秒前
10秒前
王梦秋完成签到 ,获得积分10
11秒前
11秒前
小二郎应助Dandanhuang采纳,获得10
12秒前
12秒前
12秒前
仙女发布了新的文献求助10
12秒前
asang完成签到,获得积分10
12秒前
刘国建郭菱香完成签到 ,获得积分10
12秒前
反复发作完成签到,获得积分10
13秒前
echo完成签到,获得积分10
14秒前
YFL完成签到,获得积分20
14秒前
lichunrong完成签到,获得积分10
14秒前
unicorn完成签到,获得积分10
15秒前
裴秀智发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
16秒前
默默善愁发布了新的文献求助30
17秒前
bkagyin应助史淼荷采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080