PhosBERT: A self-supervised learning model for identifying phosphorylation sites in SARS-CoV-2-infected human cells

磷酸化 计算生物学 蛋白质磷酸化 丝氨酸 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019年冠状病毒病(COVID-19) 生物 生物信息学 人工智能 计算机科学 医学 传染病(医学专业) 疾病 生物化学 蛋白激酶A 病理
作者
Yong Li,Ru Gao,Shan Liu,Hongqi Zhang,Hao Lv,Hongyan Lai
出处
期刊:Methods [Elsevier]
卷期号:230: 140-146
标识
DOI:10.1016/j.ymeth.2024.08.004
摘要

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus, which mainly causes respiratory and enteric diseases and is responsible for the outbreak of coronavirus disease 19 (COVID-19). Numerous studies have demonstrated that SARS-CoV-2 infection will lead to a significant dysregulation of protein post-translational modification profile in human cells. The accurate recognition of phosphorylation sites in host cells will contribute to a deep understanding of the pathogenic mechanisms of SARS-CoV-2 and also help to screen drugs and compounds with antiviral potential. Therefore, there is a need to develop cost-effective and high-precision computational strategies for specifically identifying SARS-CoV-2-infected phosphorylation sites. In this work, we first implemented a custom neural network model (named PhosBERT) on the basis of a pre-trained protein language model of ProtBert, which was a self-supervised learning approach developed on the Bidirectional Encoder Representation from Transformers (BERT) architecture. PhosBERT was then trained and validated on serine (S) and threonine (T) phosphorylation dataset and tyrosine (Y) phosphorylation dataset with 5-fold cross-validation, respectively. Independent validation results showed that PhosBERT could identify S/T phosphorylation sites with high accuracy and AUC (area under the receiver operating characteristic) value of 81.9% and 0.896. The prediction accuracy and AUC value of Y phosphorylation sites reached up to 87.1% and 0.902. It indicated that the proposed model was of good prediction ability and stability and would provide a new approach for studying SARS-CoV-2 phosphorylation sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guzhiwen完成签到,获得积分10
1秒前
认真的焦完成签到 ,获得积分10
2秒前
猴猴完成签到,获得积分10
2秒前
5秒前
Akim应助阳光的静白采纳,获得10
5秒前
王易云完成签到,获得积分10
8秒前
yunxiao完成签到 ,获得积分10
11秒前
12秒前
wwz应助吴鹏采纳,获得10
12秒前
111发布了新的文献求助10
14秒前
LJT完成签到,获得积分20
15秒前
Ava应助小鱼采纳,获得10
15秒前
19秒前
完美世界应助感性的又槐采纳,获得10
20秒前
20秒前
21秒前
李克杨发布了新的文献求助10
21秒前
orixero应助LJT采纳,获得10
24秒前
景辣条应助L_nan采纳,获得10
24秒前
DoIt发布了新的文献求助10
25秒前
26秒前
26秒前
大白小杨发布了新的文献求助10
27秒前
万能图书馆应助txy采纳,获得10
28秒前
30秒前
chen发布了新的文献求助10
30秒前
乐乐乐乐乐乐应助研猫采纳,获得10
33秒前
小蘑菇应助23采纳,获得10
35秒前
35秒前
Logugu完成签到,获得积分10
36秒前
香妃完成签到,获得积分10
37秒前
111完成签到,获得积分10
37秒前
英俊的铭应助大白小杨采纳,获得10
39秒前
大个应助大白小杨采纳,获得10
39秒前
39秒前
40秒前
42秒前
Logugu发布了新的文献求助10
42秒前
鸿鹄发布了新的文献求助10
42秒前
江枫完成签到 ,获得积分10
45秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530