5-羟甲基糠醛
电化学
氢氧化物
层状双氢氧化物
电催化剂
材料科学
化学
催化作用
化学工程
无机化学
有机化学
电极
物理化学
工程类
作者
Yixuan Feng,Richard L. Smith,Feng Shen,Xinhua Qi
标识
DOI:10.1021/acssuschemeng.4c06394
摘要
Quantitative conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to downstream chemicals at room temperature is a critical milestone in sustainable chemistry. Herein, conversion of metal–organic framework (MOF) structures into layered double hydroxide (LDH) electrocatalytic materials (NiFe-LDH/MOF) was fabricated using NiFe-MOF as a structure-oriented sacrificial template via an in situ electrochemical strategy. Results showed that the electrochemical method to convert the material structures not only overcame inherent limitations of MOF structures (inaccessible sites and low conductivity) but also eliminated LDH self-stacking. Hierarchical NiFe-LDH/MOF exhibited high catalytic activity and selectivity in the electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), which is due to the increased number of catalytically active sites and the extended electron transport channels of uniformly dispersed LDH nanosheets. Optimized Ni2Fe1-LDH/MOF materials achieved FDCA yields of 99% with Faraday efficiencies of 99% in 1 M KOH with 50 mM HMF at an applied potential of 1.40 V vs reversible hydrogen electrode at ambient temperature. This work demonstrates a promising method for fabricating LDH electrocatalytic materials from MOF structures and shows a proof of principle for selective oxidation of HMF to FDCA.
科研通智能强力驱动
Strongly Powered by AbleSci AI