Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data

自编码 断层(地质) 灰度 小波 卷积神经网络 小波变换 计算机科学 模式识别(心理学) 分类器(UML) 人工智能 降维 深度学习 地质学 像素 地震学
作者
Weihan Li,Dunke Liu,Yang Li,Ming Liang Hou,Jie Liu,Zhen Zhao,Aibin Guo,Huimin Zhao,Wu Deng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:24
标识
DOI:10.1177/14759217241254121
摘要

For the poor model generalization and low diagnostic efficiency of fault diagnosis under imbalanced distributions, a novel fault diagnosis method using variational autoencoder generation adversarial network and improved convolutional neural network, named VGAIC-FDM, is proposed in this paper. First, to capture local features of vibration signals, continuous wavelet transform is employed to convert the original one-dimensional fault signals into wavelet time–frequency images. Second, for the data dimensionality reduction and model simplification, the time–frequency wavelet images are processed in grayscale to generate single-channel grayscale time–frequency images. Then, sample augmentation is performed on grayscale time–frequency images to balance the dataset by using a variational autoencoder generation adversarial network. Finally, the generated images and the original images are fused and trained by using a focus-loss-optimized CNN classifier to achieve fault diagnosis under unbalanced conditions. The experimental results show that the VGAIC-FDM effectively captures the potential spatial distribution of real samples and alleviates the impact caused by the inconsistent difficulty of sample classification. As a result, it enhances the fault diagnosis performance of the model when dealing with unbalanced datasets, leading to higher accuracy and F1-score values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助聪慧芷巧采纳,获得10
刚刚
1秒前
quhayley应助木杉采纳,获得10
1秒前
1秒前
1秒前
今后应助芜湖采纳,获得10
1秒前
ZO完成签到,获得积分10
2秒前
2秒前
李健应助欢喜沛蓝采纳,获得10
2秒前
无味发布了新的文献求助10
2秒前
坦率的万言完成签到,获得积分10
3秒前
3秒前
Dreamalive12138完成签到,获得积分10
3秒前
蒲云海发布了新的文献求助10
3秒前
Lily发布了新的文献求助10
3秒前
elysia完成签到,获得积分10
3秒前
ycg完成签到,获得积分10
3秒前
3秒前
小二郎应助聪慧芷巧采纳,获得10
3秒前
沈ff完成签到,获得积分10
4秒前
jagger完成签到,获得积分10
4秒前
4秒前
czh发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助聪慧芷巧采纳,获得10
5秒前
6秒前
li发布了新的文献求助10
6秒前
陈淑玲完成签到,获得积分10
7秒前
折光发布了新的文献求助100
7秒前
7秒前
万能图书馆应助聪慧芷巧采纳,获得10
7秒前
沈ff发布了新的文献求助10
7秒前
小小li完成签到 ,获得积分10
8秒前
东华帝君发布了新的文献求助50
8秒前
ding应助淡然的宛秋采纳,获得10
9秒前
skyangar发布了新的文献求助10
9秒前
思源应助聪慧芷巧采纳,获得10
9秒前
10秒前
vivien发布了新的文献求助10
10秒前
英俊的铭应助小章鱼采纳,获得30
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993