Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data

自编码 断层(地质) 灰度 小波 卷积神经网络 小波变换 计算机科学 模式识别(心理学) 分类器(UML) 人工智能 降维 深度学习 地质学 像素 地震学
作者
Weihan Li,Dunke Liu,Yang Li,Ming Hou,Jie Liu,Zhen Zhao,Aibin Guo,Huimin Zhao,Wu Deng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (3): 1859-1872 被引量:66
标识
DOI:10.1177/14759217241254121
摘要

For the poor model generalization and low diagnostic efficiency of fault diagnosis under imbalanced distributions, a novel fault diagnosis method using variational autoencoder generation adversarial network and improved convolutional neural network, named VGAIC-FDM, is proposed in this paper. First, to capture local features of vibration signals, continuous wavelet transform is employed to convert the original one-dimensional fault signals into wavelet time–frequency images. Second, for the data dimensionality reduction and model simplification, the time–frequency wavelet images are processed in grayscale to generate single-channel grayscale time–frequency images. Then, sample augmentation is performed on grayscale time–frequency images to balance the dataset by using a variational autoencoder generation adversarial network. Finally, the generated images and the original images are fused and trained by using a focus-loss-optimized CNN classifier to achieve fault diagnosis under unbalanced conditions. The experimental results show that the VGAIC-FDM effectively captures the potential spatial distribution of real samples and alleviates the impact caused by the inconsistent difficulty of sample classification. As a result, it enhances the fault diagnosis performance of the model when dealing with unbalanced datasets, leading to higher accuracy and F1-score values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yun采纳,获得10
1秒前
1秒前
2秒前
今后应助QLLW采纳,获得10
3秒前
yx发布了新的文献求助10
3秒前
含蓄又亦完成签到 ,获得积分10
4秒前
4秒前
木子剑光军完成签到,获得积分10
5秒前
郭1107完成签到,获得积分20
5秒前
上官若男应助siyaya采纳,获得10
5秒前
田様应助GQZM采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
lsy完成签到,获得积分10
10秒前
可爱的函函应助糖糖采纳,获得10
10秒前
kk完成签到,获得积分10
10秒前
W-水完成签到,获得积分10
10秒前
10秒前
HOPE发布了新的文献求助20
11秒前
激动的似狮完成签到,获得积分0
11秒前
芋头完成签到,获得积分20
11秒前
11秒前
深情安青应助乾之三爻采纳,获得10
12秒前
疯少可还行完成签到,获得积分10
12秒前
刘家成完成签到,获得积分10
12秒前
yunjian1583发布了新的文献求助100
12秒前
xiemeili发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
桃之夭夭完成签到,获得积分10
13秒前
HonneursW完成签到,获得积分20
13秒前
负责蜜蜂完成签到,获得积分10
14秒前
壮观的菠萝完成签到,获得积分10
14秒前
14秒前
拉长的湘完成签到,获得积分10
14秒前
yuliuism应助失眠成协采纳,获得20
15秒前
大蛋发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895