Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data

自编码 断层(地质) 灰度 小波 卷积神经网络 小波变换 计算机科学 模式识别(心理学) 分类器(UML) 人工智能 降维 深度学习 地质学 像素 地震学
作者
Weihan Li,Dunke Liu,Yang Li,Ming Hou,Jie Liu,Zhen Zhao,Aibin Guo,Huimin Zhao,Wu Deng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (3): 1859-1872 被引量:60
标识
DOI:10.1177/14759217241254121
摘要

For the poor model generalization and low diagnostic efficiency of fault diagnosis under imbalanced distributions, a novel fault diagnosis method using variational autoencoder generation adversarial network and improved convolutional neural network, named VGAIC-FDM, is proposed in this paper. First, to capture local features of vibration signals, continuous wavelet transform is employed to convert the original one-dimensional fault signals into wavelet time–frequency images. Second, for the data dimensionality reduction and model simplification, the time–frequency wavelet images are processed in grayscale to generate single-channel grayscale time–frequency images. Then, sample augmentation is performed on grayscale time–frequency images to balance the dataset by using a variational autoencoder generation adversarial network. Finally, the generated images and the original images are fused and trained by using a focus-loss-optimized CNN classifier to achieve fault diagnosis under unbalanced conditions. The experimental results show that the VGAIC-FDM effectively captures the potential spatial distribution of real samples and alleviates the impact caused by the inconsistent difficulty of sample classification. As a result, it enhances the fault diagnosis performance of the model when dealing with unbalanced datasets, leading to higher accuracy and F1-score values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
???完成签到 ,获得积分10
5秒前
9秒前
9秒前
今后应助auraro采纳,获得10
9秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
shhoing应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
地表飞猪应助科研通管家采纳,获得20
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
Tamarin应助科研通管家采纳,获得10
11秒前
Verity应助科研通管家采纳,获得100
11秒前
乐乐应助科研通管家采纳,获得30
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Dr.Dream完成签到,获得积分10
12秒前
香蕉梨愁发布了新的文献求助30
14秒前
香蕉梨愁发布了新的文献求助10
14秒前
香蕉梨愁发布了新的文献求助10
14秒前
所所应助健壮的绿凝采纳,获得10
16秒前
风枞完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642927
关于积分的说明 14669750
捐赠科研通 4584417
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488985
关于科研通互助平台的介绍 1459619