Risk factor analysis and nomogram development for predicting 28-day mortality in elderly ICU patients with sepsis and type 2 diabetes mellitus

列线图 医学 糖尿病 败血症 风险因素 2型糖尿病 内科学 重症监护医学 内分泌学
作者
H Li,Yaru Zu,Qinghua Wang,Tong Zi,Xin Qin,Yan Zhao,Wei Ma,Xinan Wang,Chengdang Xu,Xi Chen,Gang Wu
出处
期刊:European Journal of Inflammation [SAGE]
卷期号:22
标识
DOI:10.1177/1721727x241282483
摘要

Background: Type 2 diabetes mellitus (T2DM) significantly contributes to sepsis, with patients suffering from both conditions exhibiting greater severity and higher mortality rates compared to those with sepsis alone. Elderly individuals in the intensive care unit (ICU) are particularly prone to these comorbidities. A nomogram prediction model was developed to accurately assess prognosis and guide treatment for elderly patients with sepsis and T2DM. Methods: Data from 1489 patients with sepsis and T2DM in the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were analyzed and categorized into 28-days survival ( n = 1156) and 28-days death groups ( n = 333). The dataset’s clinical characteristics were employed to create a nomogram predicting 28-days mortality in elderly ICU patients with sepsis and T2DM. The least absolute shrinkage and selection operator (LASSO) regression identified candidate predictors, followed by a multivariate logistic regression analysis incorporating variables with p < .05 into the final model. A nomogram was then constructed using these significant risk predictors. The model’s discriminatory power was evaluated through a receiver operating curve (ROC) and the area under the curve (AUC). Additionally, model performance was assessed using a calibration plot and the Hosmer-Lemeshow goodness-of-fit test (HL test), and clinical utility was examined via decision curve analysis (DCA). Results: Risk factors incorporated into the nomogram included age, ICU length of stay, mean blood pressure (MBP), metastatic solid tumor, Sequential Organ Failure Assessment (SOFA) score, Logistic Organ Dysfunction System (LODS) score, blood urea nitrogen (BUN), and vasopressor use. The predictive model demonstrated robust discrimination, with an AUC of 0.802 (95% CI 0.768–0.835) in the training dataset and 0.753 (95% CI 0.697–0.809) in the validation set. Calibration was confirmed with the HL test ( p > .05), and DCA indicated clinical usefulness. Conclusion: This new nomogram serves as a practical tool for predicting 28-days mortality among elderly ICU patients with sepsis and T2DM. Optimizing treatment strategies based on this model could enhance 28-days survival rates for these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇文非笑发布了新的文献求助10
刚刚
柳觅夏完成签到,获得积分10
刚刚
Balance Man发布了新的文献求助30
刚刚
lingkai完成签到,获得积分10
1秒前
gengfu完成签到,获得积分10
2秒前
2秒前
FashionBoy应助tkdzjr12345采纳,获得10
3秒前
4秒前
林夕完成签到,获得积分10
5秒前
霜序初四完成签到 ,获得积分10
5秒前
hotongue完成签到,获得积分10
5秒前
圈圈黄完成签到,获得积分10
5秒前
田様应助lingkai采纳,获得10
5秒前
沐宇完成签到,获得积分10
6秒前
汕头凯奇完成签到,获得积分10
6秒前
兴猡应助aaaa采纳,获得10
7秒前
8秒前
李健的小迷弟应助1112采纳,获得10
8秒前
jiahao发布了新的文献求助10
8秒前
道友等等我完成签到,获得积分0
10秒前
星辰大海应助临妤采纳,获得10
10秒前
米九完成签到,获得积分10
11秒前
lin完成签到,获得积分10
12秒前
2233完成签到,获得积分10
12秒前
枳花完成签到 ,获得积分10
12秒前
若E18完成签到,获得积分10
12秒前
Amy完成签到,获得积分10
13秒前
海4015应助wqwq69采纳,获得10
13秒前
phoebe_uu发布了新的文献求助10
14秒前
ygr完成签到,获得积分0
15秒前
浅是宝贝完成签到,获得积分10
15秒前
shadow完成签到,获得积分10
16秒前
香蕉觅云应助戴先森采纳,获得10
16秒前
dh完成签到,获得积分10
16秒前
plumcute完成签到,获得积分10
16秒前
agent完成签到 ,获得积分10
16秒前
隐形曼青应助boom采纳,获得10
17秒前
药学小马完成签到,获得积分10
17秒前
17秒前
123完成签到,获得积分20
18秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169