已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Risk factor analysis and nomogram development for predicting 28-day mortality in elderly ICU patients with sepsis and type 2 diabetes mellitus

列线图 医学 糖尿病 败血症 风险因素 2型糖尿病 内科学 重症监护医学 内分泌学
作者
H Li,Yaru Zu,Qinghua Wang,Tong Zi,Xin Qin,Yan Zhao,Wei Ma,Xinan Wang,Chengdang Xu,Xi Chen,Gang Wu
出处
期刊:European Journal of Inflammation [SAGE Publishing]
卷期号:22
标识
DOI:10.1177/1721727x241282483
摘要

Background: Type 2 diabetes mellitus (T2DM) significantly contributes to sepsis, with patients suffering from both conditions exhibiting greater severity and higher mortality rates compared to those with sepsis alone. Elderly individuals in the intensive care unit (ICU) are particularly prone to these comorbidities. A nomogram prediction model was developed to accurately assess prognosis and guide treatment for elderly patients with sepsis and T2DM. Methods: Data from 1489 patients with sepsis and T2DM in the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were analyzed and categorized into 28-days survival ( n = 1156) and 28-days death groups ( n = 333). The dataset’s clinical characteristics were employed to create a nomogram predicting 28-days mortality in elderly ICU patients with sepsis and T2DM. The least absolute shrinkage and selection operator (LASSO) regression identified candidate predictors, followed by a multivariate logistic regression analysis incorporating variables with p < .05 into the final model. A nomogram was then constructed using these significant risk predictors. The model’s discriminatory power was evaluated through a receiver operating curve (ROC) and the area under the curve (AUC). Additionally, model performance was assessed using a calibration plot and the Hosmer-Lemeshow goodness-of-fit test (HL test), and clinical utility was examined via decision curve analysis (DCA). Results: Risk factors incorporated into the nomogram included age, ICU length of stay, mean blood pressure (MBP), metastatic solid tumor, Sequential Organ Failure Assessment (SOFA) score, Logistic Organ Dysfunction System (LODS) score, blood urea nitrogen (BUN), and vasopressor use. The predictive model demonstrated robust discrimination, with an AUC of 0.802 (95% CI 0.768–0.835) in the training dataset and 0.753 (95% CI 0.697–0.809) in the validation set. Calibration was confirmed with the HL test ( p > .05), and DCA indicated clinical usefulness. Conclusion: This new nomogram serves as a practical tool for predicting 28-days mortality among elderly ICU patients with sepsis and T2DM. Optimizing treatment strategies based on this model could enhance 28-days survival rates for these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzh发布了新的文献求助10
5秒前
大华完成签到,获得积分10
6秒前
榴莲姑娘完成签到 ,获得积分10
7秒前
执梳完成签到,获得积分10
7秒前
NexusExplorer应助饱满的映天采纳,获得10
7秒前
明钟达完成签到,获得积分10
12秒前
传奇3应助科研通管家采纳,获得10
13秒前
qwwhu应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Angenstern完成签到 ,获得积分10
15秒前
21秒前
22秒前
Maryamgvl完成签到 ,获得积分10
23秒前
Criminology34应助qyn1234566采纳,获得80
25秒前
科研通AI6应助liaofang采纳,获得10
26秒前
26秒前
27秒前
AM发布了新的文献求助10
27秒前
28秒前
28秒前
zbol发布了新的文献求助10
28秒前
平淡钧发布了新的文献求助10
31秒前
孙东玥发布了新的文献求助10
31秒前
32秒前
小蘑菇应助maomao201026采纳,获得10
32秒前
兴奋雁蓉完成签到,获得积分10
33秒前
淮安石河子完成签到 ,获得积分10
34秒前
艳阳天完成签到 ,获得积分10
36秒前
鬼笔环肽完成签到 ,获得积分10
36秒前
39秒前
SciGPT应助无私的梦凡采纳,获得10
39秒前
也有发布了新的文献求助10
45秒前
zbol完成签到,获得积分10
45秒前
47秒前
h0jian09完成签到,获得积分10
48秒前
yncjdxyjs发布了新的文献求助10
52秒前
superfatcat完成签到,获得积分10
52秒前
dzh完成签到,获得积分20
53秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197833
求助须知:如何正确求助?哪些是违规求助? 4379025
关于积分的说明 13637476
捐赠科研通 4234845
什么是DOI,文献DOI怎么找? 2323025
邀请新用户注册赠送积分活动 1321090
关于科研通互助平台的介绍 1271903