The controlled fabrication of spatial architectures using metal-organic framework (MOF)-based particles offers opportunities for enhancing photocatalytic performances. The understanding of the contribution of assembly to a precise photocatalytic mechanism, particularly from the perspective of charge separation and extraction dynamics, still poses challenges. The present report presents a facile approach for the spatial assembly of zinc imidazolate MOF (ZIF-8), guided by β-turn peptides (SAZH). We investigated the dynamics of photoinduced carriers using transient absorption spectroscopy. The presence of a long-lived internal charge-separated state in SAZH confirms its role as an intersystem crossing state. The formation of an assembly interface facilitates efficient electron transfer from SAZH to O