Research on Deep Learning Detection Model for Pedestrian Objects in Complex Scenes Based on Improved YOLOv7

行人 行人检测 计算机科学 深度学习 人工智能 计算机视觉 人机交互 机器学习 工程类 运输工程
作者
Jun Hu,Yongqi Zhou,Hao Wang,Peng Qiao,Wan Hanim Nadrah Wan Muda
出处
期刊:Sensors [MDPI AG]
卷期号:24 (21): 6922-6922
标识
DOI:10.3390/s24216922
摘要

Objective: Pedestrian detection is very important for the environment perception and safety action of intelligent robots and autonomous driving, and is the key to ensuring the safe action of intelligent robots and auto assisted driving. Methods: In response to the characteristics of pedestrian objects occupying a small image area, diverse poses, complex scenes and severe occlusion, this paper proposes an improved pedestrian object detection method based on the YOLOv7 model, which adopts the Convolutional Block Attention Module (CBAM) attention mechanism and Deformable ConvNets v2 (DCNv2) in the two Efficient Layer Aggregation Network (ELAN) modules of the backbone feature extraction network. In addition, the detection head is replaced with a Dynamic Head (DyHead) detector head with an attention mechanism; unnecessary background information around the pedestrian object is also effectively excluded, making the model learn more concentrated feature representations. Results: Compared with the original model, the log-average miss rate of the improved YOLOv7 model is significantly reduced in both the Citypersons dataset and the INRIA dataset. Conclusions: The improved YOLOv7 model proposed in this paper achieved good performance improvement in different pedestrian detection problems. The research in this paper has important reference significance for pedestrian detection in complex scenes such as small, occluded and overlapping objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好困应助John采纳,获得10
1秒前
1111111111111完成签到,获得积分10
1秒前
王灿灿完成签到,获得积分10
1秒前
一心想出文章完成签到,获得积分10
3秒前
典雅的夜安完成签到,获得积分10
3秒前
JamesPei应助光储一体化采纳,获得10
3秒前
善学以致用应助zhang采纳,获得10
3秒前
Sekiro完成签到,获得积分10
3秒前
从容飞凤完成签到,获得积分20
4秒前
村长热爱美丽完成签到 ,获得积分10
4秒前
雨点完成签到,获得积分10
4秒前
Hbobo发布了新的文献求助30
5秒前
我要7甜瓜完成签到 ,获得积分10
5秒前
认真采萱完成签到,获得积分10
5秒前
清脆的秋寒完成签到,获得积分10
6秒前
soory完成签到,获得积分10
7秒前
9秒前
香蕉觅云应助认真采萱采纳,获得10
11秒前
Cassie应助科研小郭采纳,获得10
11秒前
研友_西门孤晴完成签到,获得积分10
11秒前
光储一体化完成签到,获得积分10
12秒前
12秒前
YY完成签到 ,获得积分10
12秒前
酆远锋发布了新的文献求助10
12秒前
14秒前
Cu完成签到,获得积分10
14秒前
lcx完成签到,获得积分10
14秒前
跳跳妈妈完成签到,获得积分10
15秒前
研友_QQC完成签到,获得积分10
15秒前
王山完成签到,获得积分10
15秒前
hdd发布了新的文献求助50
16秒前
SEVEN完成签到,获得积分10
17秒前
丰富的大地完成签到,获得积分10
17秒前
青田101完成签到,获得积分10
17秒前
聪慧驳发布了新的文献求助10
18秒前
18秒前
zhang发布了新的文献求助10
19秒前
初小花完成签到,获得积分10
19秒前
啦啦啦啦啦啦完成签到,获得积分10
19秒前
zgsn应助gloval采纳,获得30
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443