Photoexcitation‐Enhanced High‐Ionic Conductivity in Polymer Electrolytes for Flexible, All‐Solid‐State Lithium‐Metal Batteries Operating at Room Temperature

金属锂 聚合物电解质 材料科学 光激发 电解质 离子电导率 化学工程 聚合物 锂(药物) 固态 金属 快离子导体 离子键合 电导率 无机化学 化学 电极 离子 有机化学 复合材料 电气工程 物理化学 冶金 激发 医学 工程类 内分泌学
作者
Ronghao Wang,Weiyi Wang,Yuzhen Zhang,Wei Hu,Liang Yu,Jiahao Ni,Wanqun Zhang,Gang Pei,Shangfeng Yang,Lifeng Chen
出处
期刊:Angewandte Chemie [Wiley]
被引量:3
标识
DOI:10.1002/anie.202417605
摘要

Abstract Designing solid polymer electrolytes (SPEs) with high ionic conductivity for room‐temperature operation is essential for advancing flexible all‐solid‐state energy storage devices. Innovative strategies are urgently required to develop SPEs that are safe, stable, and high‐performing. In this work, we introduce photoexcitation‐modulated heterojunctions as catalytically active fillers within SPEs, guided by photocatalytic design principles, and meanwhile employ natural bacterial cellulose to improve the compatibility with poly(ethylene oxide), improve the coordination environment of lithium salts, and optimize both ion transport and mechanical properties. In situ photothermal experiments and theoretical calculations reveal that the strong photogenerated electric field produced by trace heterojunctions within poly(ethylene oxide) electrolytes under photoexcitation significantly enhances lithium salt dissociation, increasing the concentration of mobile Li + . This results in a substantial increase in ionic conductivity, reaching 0.135 mS cm −1 at 25 °C, with a Li + transference number as high as 0.46. The flexible all‐solid‐state lithium‐metal pouch cells exhibit an impressive discharge capacity of 178.8 mAh g −1 even after repeated bending and folding, and demonstrate exceptional long‐term cycling stability, retaining 86.7 % of their initial capacity after 250 cycles at 1 C (25 °C). This research offers a novel approach to developing high‐performance flexible lithium‐metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助听闻采纳,获得10
1秒前
jue123发布了新的文献求助20
1秒前
大个应助SinaiPen采纳,获得10
1秒前
酷波er应助方方采纳,获得10
1秒前
王碱发布了新的文献求助10
1秒前
向阳发布了新的文献求助10
2秒前
瑶一瑶发布了新的文献求助10
3秒前
liujing_242022完成签到,获得积分10
3秒前
3秒前
星辰大海应助司空问安采纳,获得10
4秒前
研友_nV2pkn完成签到,获得积分10
4秒前
kasumin发布了新的文献求助10
4秒前
zjw发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
酷炫的之柔完成签到,获得积分10
5秒前
大模型应助阿冷采纳,获得10
6秒前
jy完成签到,获得积分10
6秒前
6秒前
Amanda完成签到,获得积分10
6秒前
lorentzh发布了新的文献求助10
6秒前
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
ssllcg完成签到,获得积分20
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助KYT龙采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
ohyeah8888应助科研通管家采纳,获得50
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755902
求助须知:如何正确求助?哪些是违规求助? 3299200
关于积分的说明 10109040
捐赠科研通 3013805
什么是DOI,文献DOI怎么找? 1655255
邀请新用户注册赠送积分活动 789678
科研通“疑难数据库(出版商)”最低求助积分说明 753361