Machine learning identifies individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death who have unrealised opportunities to reduce future cardiovascular risk

医学 重症监护医学 心血管健康 疾病 心脏病学 内科学
作者
Ramesh Nadarajah,Ali Wahab,Catherine Reynolds,Mohammad Haris,Asad Bhatty,Ben Hurdus,Umair Nadeem,Simon Bennet,Harriet Larvin,Jianhua Wu,C P Gale
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2689
摘要

Abstract Background Machine learning may be able to identify individuals at risk of cardio-renal-metabolic events using routinely-collected data, and these individuals may be suitable for targeted preventative strategies.(1, 2) Purpose To train and test a machine learning algorithm to identify individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death, and then establish if there are opportunities to reduce their future cardiovascular risk. Methods We trained a random classifier (OPTIMISE) in UK primary care EHR data from 2 081 139 individuals aged ≥30 years (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We calculated the cumulative incidence rate for ten cardio-renal-metabolic diseases and death. Fine and Gray’s models with competing risk of death were fit for each outcome between higher and lower predicted risk. In a multi-centre pilot interventional single arm study consenting individuals aged ≥30 years at higher predicted risk received cardio-renal-metabolic phenotyping and assessment for guideline target attainment. Results In the testing dataset (n = 416 228), individuals at higher predicted risk had higher long-term risk of heart failure (HR 12.54), aortic stenosis (HR 9.98), AF (HR 8·75), stroke/TIA (HR 8.07), CKD (HR 6.85), PVD (HR 6.62), valvular heart disease (HR 6.49), MI (HR 5.02), diabetes (HR 2.05) and COPD (HR 2.02) (Figure 1). This cohort were also at higher risk of death (HR 10.45), accounting for 74% of cardiovascular deaths (8 582 of 11 676) during 10-year follow up. Of 82 higher risk patients in the pilot study (mean age 71.6 years (SD 7.5), 50% women), the prevalence of cardio-renal-metabolic disease was high (Table 1), and there were opportunities to reduce future cardiovascular risk. Of higher risk patients with hypertension, 58.5% (31/53) of those aged <80 years had a systolic blood pressure (SBP)>140mmHg, and 54.5% (6/11) of those aged ≥80 years had a SBP >150mmHg. Of those with type 2 diabetes and co-existent ASCVD, only 23.1% (3/13) were on SGLT2 inhibitor therapy. Of higher risk patients on statin therapy, 37.0% (20/54) had LDL-cholesterol >1.8 mmol/L, and 52.0% (12/25) of patients with previous ASCVD had an LDL-cholesterol >1.4mmol/L. Furthermore, 19.5% (16/82) of the higher risk cohort had undiagnosed moderate or high risk CKD; who were infrequently prescribed a statin (41.7%; 5/12), ACE-i/ARB therapy with co-existent hypertension (61.5%. 8/13), or SGLT2 inhibitor with co-existent diabetes (83.3% (5/6)). Obesity was present in 49%, and 17% (14/82) were eligible for GLP-1 RA therapy. Conclusions The machine learning OPTIMISE algorithm can identify people at higher risk of cardio-renal-metabolic diseases and death using routinely collected data. On prospective evaluation higher risk individuals have unrecorded and undertreated cardio-renal-metabolic diseases, which are actionable targets for preventative care.Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
京阿尼发布了新的文献求助10
1秒前
好久不见发布了新的文献求助10
1秒前
小二郎应助轩辕德地采纳,获得10
1秒前
超级的飞飞完成签到,获得积分10
4秒前
5秒前
5秒前
金容完成签到,获得积分10
6秒前
细雨听风完成签到,获得积分10
6秒前
含糊的白安完成签到,获得积分10
7秒前
迟大猫应助xzn1123采纳,获得30
8秒前
8秒前
8秒前
科研通AI5应助李李采纳,获得50
9秒前
祖f完成签到,获得积分10
9秒前
阿莫西林胶囊完成签到,获得积分10
10秒前
jason完成签到,获得积分10
10秒前
10秒前
科研通AI5应助吴岳采纳,获得10
11秒前
Sheila发布了新的文献求助10
11秒前
甜美的海瑶完成签到,获得积分10
12秒前
12秒前
12秒前
张牧之完成签到 ,获得积分10
12秒前
yuyukeke完成签到,获得积分10
13秒前
13秒前
沉默的婴完成签到 ,获得积分10
13秒前
14秒前
15秒前
Dita完成签到,获得积分10
15秒前
惠惠发布了新的文献求助10
15秒前
脑洞疼应助lan采纳,获得10
16秒前
17秒前
成就的笑南完成签到 ,获得积分10
18秒前
偷狗的小月亮完成签到,获得积分10
18秒前
爱吃泡芙完成签到,获得积分10
18秒前
ysl完成签到,获得积分10
19秒前
19秒前
爆米花应助pipge采纳,获得30
19秒前
彻底完成签到,获得积分10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808