Machine learning identifies individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death who have unrealised opportunities to reduce future cardiovascular risk

医学 重症监护医学 心血管健康 疾病 心脏病学 内科学
作者
Ramesh Nadarajah,Ali Wahab,Catherine Reynolds,Mohammad Haris,Asad Bhatty,Ben Hurdus,Umair Nadeem,Simon Bennet,Harriet Larvin,Jianhua Wu,C P Gale
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2689
摘要

Abstract Background Machine learning may be able to identify individuals at risk of cardio-renal-metabolic events using routinely-collected data, and these individuals may be suitable for targeted preventative strategies.(1, 2) Purpose To train and test a machine learning algorithm to identify individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death, and then establish if there are opportunities to reduce their future cardiovascular risk. Methods We trained a random classifier (OPTIMISE) in UK primary care EHR data from 2 081 139 individuals aged ≥30 years (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We calculated the cumulative incidence rate for ten cardio-renal-metabolic diseases and death. Fine and Gray’s models with competing risk of death were fit for each outcome between higher and lower predicted risk. In a multi-centre pilot interventional single arm study consenting individuals aged ≥30 years at higher predicted risk received cardio-renal-metabolic phenotyping and assessment for guideline target attainment. Results In the testing dataset (n = 416 228), individuals at higher predicted risk had higher long-term risk of heart failure (HR 12.54), aortic stenosis (HR 9.98), AF (HR 8·75), stroke/TIA (HR 8.07), CKD (HR 6.85), PVD (HR 6.62), valvular heart disease (HR 6.49), MI (HR 5.02), diabetes (HR 2.05) and COPD (HR 2.02) (Figure 1). This cohort were also at higher risk of death (HR 10.45), accounting for 74% of cardiovascular deaths (8 582 of 11 676) during 10-year follow up. Of 82 higher risk patients in the pilot study (mean age 71.6 years (SD 7.5), 50% women), the prevalence of cardio-renal-metabolic disease was high (Table 1), and there were opportunities to reduce future cardiovascular risk. Of higher risk patients with hypertension, 58.5% (31/53) of those aged <80 years had a systolic blood pressure (SBP)>140mmHg, and 54.5% (6/11) of those aged ≥80 years had a SBP >150mmHg. Of those with type 2 diabetes and co-existent ASCVD, only 23.1% (3/13) were on SGLT2 inhibitor therapy. Of higher risk patients on statin therapy, 37.0% (20/54) had LDL-cholesterol >1.8 mmol/L, and 52.0% (12/25) of patients with previous ASCVD had an LDL-cholesterol >1.4mmol/L. Furthermore, 19.5% (16/82) of the higher risk cohort had undiagnosed moderate or high risk CKD; who were infrequently prescribed a statin (41.7%; 5/12), ACE-i/ARB therapy with co-existent hypertension (61.5%. 8/13), or SGLT2 inhibitor with co-existent diabetes (83.3% (5/6)). Obesity was present in 49%, and 17% (14/82) were eligible for GLP-1 RA therapy. Conclusions The machine learning OPTIMISE algorithm can identify people at higher risk of cardio-renal-metabolic diseases and death using routinely collected data. On prospective evaluation higher risk individuals have unrecorded and undertreated cardio-renal-metabolic diseases, which are actionable targets for preventative care.Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研小马采纳,获得10
2秒前
米鼓完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
6秒前
华仔应助小叶大王采纳,获得10
7秒前
17完成签到,获得积分10
9秒前
海孩子完成签到,获得积分10
14秒前
薛乎虚完成签到 ,获得积分10
14秒前
艳艳宝完成签到 ,获得积分10
19秒前
失眠的笑翠完成签到 ,获得积分10
20秒前
21秒前
完美世界应助小白采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
gelinhao完成签到,获得积分10
24秒前
chi发布了新的文献求助10
25秒前
彭于彦祖应助科研通管家采纳,获得150
29秒前
Singularity应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
小杭76应助科研通管家采纳,获得10
29秒前
Singularity应助科研通管家采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
Singularity应助科研通管家采纳,获得10
29秒前
小杭76应助科研通管家采纳,获得10
29秒前
Singularity应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
风清扬应助科研通管家采纳,获得150
30秒前
养猪大户完成签到 ,获得积分10
30秒前
小杭76应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得50
30秒前
量子星尘发布了新的文献求助10
30秒前
carly完成签到 ,获得积分10
32秒前
赖建琛完成签到 ,获得积分10
34秒前
秀丽笑容完成签到 ,获得积分10
35秒前
38秒前
四季豆完成签到,获得积分10
38秒前
那些兔儿完成签到 ,获得积分0
41秒前
所所应助闪闪灵雁采纳,获得10
42秒前
四季豆发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966