Machine learning identifies individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death who have unrealised opportunities to reduce future cardiovascular risk

医学 重症监护医学 心血管健康 疾病 心脏病学 内科学
作者
Ramesh Nadarajah,Ali Wahab,Catherine Reynolds,Mohammad Haris,Asad Bhatty,Ben Hurdus,Umair Nadeem,Simon Bennet,Harriet Larvin,Jianhua Wu,C P Gale
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2689
摘要

Abstract Background Machine learning may be able to identify individuals at risk of cardio-renal-metabolic events using routinely-collected data, and these individuals may be suitable for targeted preventative strategies.(1, 2) Purpose To train and test a machine learning algorithm to identify individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death, and then establish if there are opportunities to reduce their future cardiovascular risk. Methods We trained a random classifier (OPTIMISE) in UK primary care EHR data from 2 081 139 individuals aged ≥30 years (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We calculated the cumulative incidence rate for ten cardio-renal-metabolic diseases and death. Fine and Gray’s models with competing risk of death were fit for each outcome between higher and lower predicted risk. In a multi-centre pilot interventional single arm study consenting individuals aged ≥30 years at higher predicted risk received cardio-renal-metabolic phenotyping and assessment for guideline target attainment. Results In the testing dataset (n = 416 228), individuals at higher predicted risk had higher long-term risk of heart failure (HR 12.54), aortic stenosis (HR 9.98), AF (HR 8·75), stroke/TIA (HR 8.07), CKD (HR 6.85), PVD (HR 6.62), valvular heart disease (HR 6.49), MI (HR 5.02), diabetes (HR 2.05) and COPD (HR 2.02) (Figure 1). This cohort were also at higher risk of death (HR 10.45), accounting for 74% of cardiovascular deaths (8 582 of 11 676) during 10-year follow up. Of 82 higher risk patients in the pilot study (mean age 71.6 years (SD 7.5), 50% women), the prevalence of cardio-renal-metabolic disease was high (Table 1), and there were opportunities to reduce future cardiovascular risk. Of higher risk patients with hypertension, 58.5% (31/53) of those aged <80 years had a systolic blood pressure (SBP)>140mmHg, and 54.5% (6/11) of those aged ≥80 years had a SBP >150mmHg. Of those with type 2 diabetes and co-existent ASCVD, only 23.1% (3/13) were on SGLT2 inhibitor therapy. Of higher risk patients on statin therapy, 37.0% (20/54) had LDL-cholesterol >1.8 mmol/L, and 52.0% (12/25) of patients with previous ASCVD had an LDL-cholesterol >1.4mmol/L. Furthermore, 19.5% (16/82) of the higher risk cohort had undiagnosed moderate or high risk CKD; who were infrequently prescribed a statin (41.7%; 5/12), ACE-i/ARB therapy with co-existent hypertension (61.5%. 8/13), or SGLT2 inhibitor with co-existent diabetes (83.3% (5/6)). Obesity was present in 49%, and 17% (14/82) were eligible for GLP-1 RA therapy. Conclusions The machine learning OPTIMISE algorithm can identify people at higher risk of cardio-renal-metabolic diseases and death using routinely collected data. On prospective evaluation higher risk individuals have unrecorded and undertreated cardio-renal-metabolic diseases, which are actionable targets for preventative care.Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒庆春发布了新的文献求助10
刚刚
1秒前
隐形曼青应助Zj采纳,获得10
1秒前
1秒前
1秒前
1秒前
张雷应助HC采纳,获得10
1秒前
热心市民小红花应助Qwe采纳,获得10
2秒前
2秒前
阿霏霏完成签到,获得积分10
3秒前
直率飞丹发布了新的文献求助10
3秒前
4秒前
4秒前
情怀应助科研通管家采纳,获得30
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
开心浩阑应助科研通管家采纳,获得20
5秒前
暮歌发布了新的文献求助20
6秒前
虚幻慕灵发布了新的文献求助10
6秒前
xd完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
大大泡泡完成签到,获得积分10
7秒前
7秒前
司空雨筠完成签到,获得积分10
7秒前
8秒前
xiayil发布了新的文献求助10
8秒前
小蘑菇应助Nakacoke77采纳,获得10
8秒前
shenghaowen完成签到,获得积分10
8秒前
9秒前
9秒前
cc发布了新的文献求助10
10秒前
10秒前
噜噜噜完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958292
求助须知:如何正确求助?哪些是违规求助? 3504494
关于积分的说明 11118663
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788457
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582