Machine learning identifies individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death who have unrealised opportunities to reduce future cardiovascular risk

医学 重症监护医学 心血管健康 疾病 心脏病学 内科学
作者
Ramesh Nadarajah,Ali Wahab,Catherine Reynolds,Mohammad Haris,Asad Bhatty,Ben Hurdus,Umair Nadeem,Simon Bennet,Harriet Larvin,Jianhua Wu,C P Gale
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2689
摘要

Abstract Background Machine learning may be able to identify individuals at risk of cardio-renal-metabolic events using routinely-collected data, and these individuals may be suitable for targeted preventative strategies.(1, 2) Purpose To train and test a machine learning algorithm to identify individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death, and then establish if there are opportunities to reduce their future cardiovascular risk. Methods We trained a random classifier (OPTIMISE) in UK primary care EHR data from 2 081 139 individuals aged ≥30 years (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We calculated the cumulative incidence rate for ten cardio-renal-metabolic diseases and death. Fine and Gray’s models with competing risk of death were fit for each outcome between higher and lower predicted risk. In a multi-centre pilot interventional single arm study consenting individuals aged ≥30 years at higher predicted risk received cardio-renal-metabolic phenotyping and assessment for guideline target attainment. Results In the testing dataset (n = 416 228), individuals at higher predicted risk had higher long-term risk of heart failure (HR 12.54), aortic stenosis (HR 9.98), AF (HR 8·75), stroke/TIA (HR 8.07), CKD (HR 6.85), PVD (HR 6.62), valvular heart disease (HR 6.49), MI (HR 5.02), diabetes (HR 2.05) and COPD (HR 2.02) (Figure 1). This cohort were also at higher risk of death (HR 10.45), accounting for 74% of cardiovascular deaths (8 582 of 11 676) during 10-year follow up. Of 82 higher risk patients in the pilot study (mean age 71.6 years (SD 7.5), 50% women), the prevalence of cardio-renal-metabolic disease was high (Table 1), and there were opportunities to reduce future cardiovascular risk. Of higher risk patients with hypertension, 58.5% (31/53) of those aged <80 years had a systolic blood pressure (SBP)>140mmHg, and 54.5% (6/11) of those aged ≥80 years had a SBP >150mmHg. Of those with type 2 diabetes and co-existent ASCVD, only 23.1% (3/13) were on SGLT2 inhibitor therapy. Of higher risk patients on statin therapy, 37.0% (20/54) had LDL-cholesterol >1.8 mmol/L, and 52.0% (12/25) of patients with previous ASCVD had an LDL-cholesterol >1.4mmol/L. Furthermore, 19.5% (16/82) of the higher risk cohort had undiagnosed moderate or high risk CKD; who were infrequently prescribed a statin (41.7%; 5/12), ACE-i/ARB therapy with co-existent hypertension (61.5%. 8/13), or SGLT2 inhibitor with co-existent diabetes (83.3% (5/6)). Obesity was present in 49%, and 17% (14/82) were eligible for GLP-1 RA therapy. Conclusions The machine learning OPTIMISE algorithm can identify people at higher risk of cardio-renal-metabolic diseases and death using routinely collected data. On prospective evaluation higher risk individuals have unrecorded and undertreated cardio-renal-metabolic diseases, which are actionable targets for preventative care.Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
英俊的铭应助舒服的冬天采纳,获得10
2秒前
2秒前
2224536发布了新的文献求助10
3秒前
66发布了新的文献求助10
3秒前
如意秋柳完成签到,获得积分10
3秒前
hahah驳回了顾矜应助
3秒前
可靠的卿完成签到,获得积分20
3秒前
3秒前
李傲发布了新的文献求助10
4秒前
流年xy完成签到,获得积分10
5秒前
沉静黎云发布了新的文献求助10
6秒前
zz发布了新的文献求助10
7秒前
dsgcd发布了新的文献求助10
7秒前
7秒前
英俊的铭应助小AB采纳,获得10
8秒前
任性雨柏发布了新的文献求助10
9秒前
震动的盼晴完成签到,获得积分10
10秒前
不配.应助liia采纳,获得10
11秒前
薰硝壤应助zz采纳,获得20
11秒前
傲娇的冷亦完成签到,获得积分10
12秒前
12秒前
FashionBoy应助2224536采纳,获得30
13秒前
李健应助greatct采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
马如辰关注了科研通微信公众号
15秒前
15秒前
清爽的雨竹完成签到,获得积分10
16秒前
研友_ngk2rn完成签到,获得积分10
17秒前
半透明完成签到,获得积分20
17秒前
图图烤肉发布了新的文献求助10
18秒前
19秒前
19秒前
科研一定要通完成签到,获得积分10
19秒前
奶昔源发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102382
求助须知:如何正确求助?哪些是违规求助? 2753656
关于积分的说明 7624478
捐赠科研通 2406188
什么是DOI,文献DOI怎么找? 1276717
科研通“疑难数据库(出版商)”最低求助积分说明 616918
版权声明 599103