Foretelling the compressive strength of bamboo using machine learning techniques

抗压强度 竹子 结构工程 数学 工程类 复合材料 机器学习 人工智能 计算机科学 材料科学
作者
Saurabh Dubey,Deepak Gupta,Mainak Mallik
出处
期刊:Engineering Computations [Emerald (MCB UP)]
标识
DOI:10.1108/ec-06-2024-0507
摘要

Purpose The purpose of this research was to develop and evaluate a machine learning (ML) algorithm to accurately predict bamboo compressive strength (BCS). Using a dataset of 150 bamboo samples with features such as cross-sectional area, dry weight, density, outer diameter, culm thickness and load, various ML algorithms including artificial neural network (ANN), extreme learning machine (ELM) and support vector regression (SVR) were tested. The ELM algorithm outperformed others, showing superior accuracy based on metrics like R2, MSE, RMSE, MAE and MAPE. The study highlights the efficacy of ELM in enhancing the precision and reliability of BCS predictions, establishing it as a valuable tool for assessing bamboo strength. Design/methodology/approach This study experimentally created a dataset of 150 bamboo samples to predict BCS using ML algorithms. Key predictive features included cross-sectional area, dry weight, density, outer diameter, culm thickness and load. The performance of various ML algorithms, including ANN, ELM and SVR, was evaluated. ELM demonstrated superior performance based on metrics such as coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), establishing its robustness in predicting BCS accurately. Findings The study found that the ELM algorithm outperformed other ML algorithms, including ANN and SVR, in predicting BCS. ELM achieved the highest accuracy based on key metrics such as R2, MSE, RMSE, MAE and MAPE. These results indicate that ELM is a highly effective and reliable tool for predicting the compressive strength of bamboo, thereby enhancing the precision and dependability of BCS evaluations. Originality/value This study is original in its application of the ELM algorithm to predict BCS using experimentally derived data. By comparing ELM with other ML algorithms like ANN and SVR, the research establishes ELM’s superior performance and reliability. The findings demonstrate the significant potential of ELM in material strength prediction, offering a novel and robust approach to evaluating bamboo’s compressive properties. This contributes valuable insights into the field of material science and engineering, particularly in the context of sustainable construction materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xia完成签到,获得积分10
1秒前
研友_X84KrZ完成签到 ,获得积分10
1秒前
陶醉的大白完成签到 ,获得积分10
3秒前
卓初露完成签到 ,获得积分10
14秒前
嘻嘻完成签到,获得积分10
16秒前
我和你完成签到 ,获得积分10
19秒前
欢呼曼荷完成签到,获得积分10
19秒前
求知的周完成签到,获得积分10
27秒前
胖胖橘完成签到 ,获得积分10
29秒前
小彭陪小崔读个研完成签到 ,获得积分10
33秒前
筱筱完成签到 ,获得积分10
38秒前
怡然白竹完成签到 ,获得积分10
38秒前
cdy完成签到 ,获得积分10
40秒前
笨笨青筠完成签到 ,获得积分10
43秒前
粗犷的凌兰完成签到,获得积分10
45秒前
MOF完成签到 ,获得积分10
48秒前
8D完成签到,获得积分10
1分钟前
萨格完成签到 ,获得积分10
1分钟前
山山而川完成签到 ,获得积分10
1分钟前
gnr2000完成签到,获得积分0
1分钟前
tzy6665完成签到,获得积分10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
simon完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
阿甘完成签到,获得积分10
1分钟前
radio完成签到 ,获得积分10
1分钟前
ii完成签到 ,获得积分10
1分钟前
feimengxia完成签到 ,获得积分10
1分钟前
albertxin完成签到,获得积分10
1分钟前
cc2001完成签到,获得积分10
1分钟前
杨tong完成签到 ,获得积分10
1分钟前
念初完成签到 ,获得积分10
2分钟前
小朱完成签到 ,获得积分10
2分钟前
课呢完成签到,获得积分10
2分钟前
55555发布了新的文献求助30
2分钟前
Gang完成签到,获得积分10
2分钟前
蚂蚁踢大象完成签到 ,获得积分10
2分钟前
Raymond完成签到,获得积分10
2分钟前
chowjb完成签到,获得积分10
2分钟前
i2stay完成签到,获得积分10
2分钟前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288478
求助须知:如何正确求助?哪些是违规求助? 2925860
关于积分的说明 8423505
捐赠科研通 2596904
什么是DOI,文献DOI怎么找? 1416747
科研通“疑难数据库(出版商)”最低求助积分说明 659488
邀请新用户注册赠送积分活动 641878