An improved YOLOv7 model based on Swin Transformer and Trident Pyramid Networks for accurate tomato detection

计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 生物化学 化学 基因
作者
Guoxu Liu,Yonghui Zhang,Jun Liu,Deyong Liu,Chen Chun-lei,Yujie Li,Xiujie Zhang,Philippe Lyonel Touko Mbouembe
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1452821
摘要

Accurate fruit detection is crucial for automated fruit picking. However, real-world scenarios, influenced by complex environmental factors such as illumination variations, occlusion, and overlap, pose significant challenges to accurate fruit detection. These challenges subsequently impact the commercialization of fruit harvesting robots. A tomato detection model named YOLO-SwinTF, based on YOLOv7, is proposed to address these challenges. Integrating Swin Transformer (ST) blocks into the backbone network enables the model to capture global information by modeling long-range visual dependencies. Trident Pyramid Networks (TPN) are introduced to overcome the limitations of PANet’s focus on communication-based processing. TPN incorporates multiple self-processing (SP) modules within existing top-down and bottom-up architectures, allowing feature maps to generate new findings for communication. In addition, Focaler-IoU is introduced to reconstruct the original intersection-over-union (IoU) loss to allow the loss function to adjust its focus based on the distribution of difficult and easy samples. The proposed model is evaluated on a tomato dataset, and the experimental results demonstrated that the proposed model’s detection recall, precision, F 1 score, and AP reach 96.27%, 96.17%, 96.22%, and 98.67%, respectively. These represent improvements of 1.64%, 0.92%, 1.28%, and 0.88% compared to the original YOLOv7 model. When compared to other state-of-the-art detection methods, this approach achieves superior performance in terms of accuracy while maintaining comparable detection speed. In addition, the proposed model exhibits strong robustness under various lighting and occlusion conditions, demonstrating its significant potential in tomato detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助打地鼠工人采纳,获得10
1秒前
无趣养乐多完成签到,获得积分10
3秒前
西西发布了新的文献求助10
3秒前
乐乐应助Zacwhay采纳,获得10
7秒前
7秒前
7秒前
9秒前
9秒前
10秒前
12秒前
小加发布了新的文献求助20
12秒前
KTaoL发布了新的文献求助10
12秒前
你好啊发布了新的文献求助10
13秒前
田様应助笑点低的白莲采纳,获得10
14秒前
笑笑发布了新的文献求助10
14秒前
14秒前
领衔发布了新的文献求助10
16秒前
17秒前
珍惜发布了新的文献求助30
19秒前
Lvweieg完成签到,获得积分10
19秒前
天天快乐应助笑笑采纳,获得10
21秒前
21秒前
所所应助果汁采纳,获得10
22秒前
25秒前
吁吁发布了新的文献求助10
25秒前
28秒前
29秒前
孤兰完成签到,获得积分10
29秒前
31秒前
mochi完成签到,获得积分10
31秒前
31秒前
32秒前
32秒前
32秒前
孤兰发布了新的文献求助20
33秒前
34秒前
樊珩发布了新的文献求助10
35秒前
mochi发布了新的文献求助10
35秒前
方若剑完成签到,获得积分10
35秒前
梁燕完成签到 ,获得积分10
35秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129758
求助须知:如何正确求助?哪些是违规求助? 2780521
关于积分的说明 7748895
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294339
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570